Completeness of Randomized Kinodynamic Planners with State-based Steering

Stéphane Caron, Quang-Cuong Pham and Yoshihiko Nakamura. ICRA 2014, Hong-Kong, China, June 2014.

Abstract

The panorama of probabilistic completeness results for kinodynamic planners is still confusing. Most existing completeness proofs require strong assumptions that are difficult, if not impossible, to verify in practice. To make completeness results more useful, it is thus sensible to estabish a classification of the various types of constraints and planning methods, and then attack each class with specific proofs and hypotheses that can be verified in practice. We propose such a classification, and provide a proof of probabilistic completeness for an important class of planners, namely those whose steering method is based on the interpolation of system trajectories in the state space. We also provide design guidelines for the interpolation function and discuss two criteria arising from our analysis: local boundedness and acceleration compliance.

BibTeX

@inproceedings{caron2014icra,
  title = {Completeness of Randomized Kinodynamic Planners with State-based Steering},
  author = {Caron, St{\'e}phane and Pham, Quang-Cuong and Nakamura, Yoshihiko},
  booktitle = {IEEE International Conference on Robotics and Automation},
  year = {2014},
  month = may,
  pages = {5818--5823},
  doi = {10.1109/ICRA.2014.6907714},
}

Discussion

Feel free to post a comment by e-mail using the form below. Your e-mail address will not be disclosed.

📝 You can use Markdown with $\LaTeX$ formulas in your comment.

By clicking the button below, you agree to the publication of your comment on this page.

Opens your e-mail client.