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Abstract— The panorama of probabilistic completeness re-
sults for kinodynamic planners is still confusing. Most exist-
ing completeness proofs require strong assumptions that are
difficult, if not impossible, to verify in practice. To make
completeness results more useful, it is thus sensible to establish
a classification of the various types of constraints and planning
methods, and then attack each class with specific proofs and
hypotheses that can be verified in practice. We propose such a
classification, and provide a proof of probabilistic completeness
for an important class of planners, namely those whose steering
method is based on the interpolation of system trajectories
in the state space. We also provide design guidelines for the
interpolation function and discuss two criteria arising from our
analysis: local boundedness and acceleration compliance.

I. I NTRODUCTION

A deterministicmotion planning algorithm (or planner)
is said to becompleteif it returns a solution to a motion
planning problem whenever one exists (seee.g., [1]). A
randomizedplanner is said to beprobabilistically complete
if the probability of returning a solution tends to one as
execution time goes to infinity. The concepts of complete-
ness and probabilistic completeness, although theoretical by
nature, are also of practical interest: proving them requires
one to specify what assumptions are needed for a planner
to find solutions,i.e., what types of problems can be solved.
This provides more general guarantees than empirical results.
Experiments can show that a planner works for a given
combination of robot, environment, task, (set of tweaks and
heuristics), but a proof of completeness is a certificate that
the planner works for a whole set of problems, the size of this
set being determined by the assumptions required to make
the proof (the weaker the assumptions, the larger the set of
solvable problems).

While the probabilistic completeness of randomized plan-
ners has been well established for systems withgeometric
constraints (such as obstacle avoidance), proofs for systems
with kinodynamic constraints [2], [3], [4] have not yet
reached the same level of generality: in many proofs, the
assumptions made are quite strong and difficult to verify on
practical systems (as a matter of fact, none of the previously
mentioned works verified their hypotheses on non-trivial
systems). One of the reasons for this lies in the large variety
of kinodynamic constraints and planning methods that can
be found.
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To make completeness proofs more useful in practice, it
is thus necessary to estabish a classification of the different
types of constraints and planning methods, and then attack
each class with specific proofs and hypotheses that can be
more easily checked. In section II, we propose such a clas-
sification based on kinodynamic constraints (non-holonomic
or dynamics-bound-based) and planning methods (depending
upon their underlying steering methods: analytic, control-
based or state-based). We also discuss the shortcomings of
existing completeness proofs. Then, in section III, we prove
a completeness result for the class of state-based steering
planners applied to systems with dynamics bounds. Finally,
in section IV, we conclude by discussing the implications of
our results as well as future research objectives.

II. CLASSIFICATION OF K INODYAMIC CONSTRAINTS

AND OF STEERING METHODS

A. Classification of Kinodynamic Constraints

Motion planning was first concerned only withgeometric
constraints such as obstacle avoidance or those imposed by
the kinematic structures of manipulators [5], [6], [4], [2].
More recently,kinodynamicconstraints, which stem from the
dynamical equationsthe systems are subject to, have also
been taken into account [7], [2], [8].

Kinodynamic constraints are more difficult to deal with
than geometric constraints because they cannot in general
be expressed using onlyconfiguration-space variables–
such as the joint angles of a manipulator, the position and
the orientation of a mobile robot, etc. They indeed involve
higher-order derivativesof the configuration-space variables.
However, these derivatives appear in the constraints in two
main different ways, which involve different types of diffi-
culties:

1) Non-holonomic constraintsare non-integrableequal-
ity constraints on higher-order derivatives of the
configuration-space variables. They can be first-order,
as found in wheeled vehicles [9], or second-order, as
found in under-actuated manipulators or space robots.

2) Bounds on dynamic quantitiesareinequalityconstraints
on higher-order derivatives of the configuration-space
variables. These include torque bounds for manipula-
tors [10], ZMP constraints for walking robots, friction
constraints in grasp synthesis, etc.

Some authors have considered systems that are subject to
both types of constraints, such as under-actuated manipula-
tors with torque bounds [11].
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We shall see in section II-C that control-based steering
is more adapted to systems with non-holonomic constraints
while state-based steering is more adapted to systems with
inequality constraints.

B. Structure of Randomized Planners

Randomized planners such as such as Probabilistic
Roadmaps (PRM) [6] or Rapidly-exploring Random Trees
(RRT) [2] build a roadmap on the state space. In PRM,
multiple samples are drawn from the free state space, and
local steering is used to connect nearby states. Meanwhile,
starting from an initial statexinit , RRT grows a tree by
sampling random states and connecting them to their closest
neighbor in the tree. Both behaviors are represented by the
extensionstep, as given by Algorithm 1 below. It has the
following sub-routines (see Fig. 1 for an illustration):

• Sampling SAMPLE(S): randomly samples from a
setS;

• Antecedent selectionPARENTS(x′, V ): returns a set
of statesx belonging to the roadmapV , from which
steering towardsx′ will be attempted;

• Local steeringSTEER(x, x′): tries to steer the system
from x towardsx′. If successful, returns a new node
xsteer ready to be added to the roadmap. Depending on
the planner, the successfulness criterion maye.g., be
“reachx′ exactly” or “get close enough tox′”.

The design of each sub-routine greatly impacts the quality
and even the completeness of the resulting planner.

Algorithm 1 Extension step in randomized planners
Require: initial nodexinit , number of iterationsN

1: (V,E)← ({xinit}, ∅)
2: for N stepsdo
3: xrand← SAMPLE(Xfree)
4: Xparents← PARENTS(xrand, V )
5: for xparent in Xparents do
6: xsteer← STEER(xparent, xrand)
7: if xsteer is a valid statethen
8: V ← V ∪ {xsteer}
9: E ← E ∪ {(xparent, xsteer)}

10: end if
11: end for
12: end for
13: return (V,E)

In the literature, SAMPLE is usually implemented as
uniform random sampling. Some authors have suggested to
use adaptive sampling to improve the performance of RRT
or PRM planners.

In geometric planners, PARENTS is usually implemented
by defining a metric (e.g., theℓ2 norm) on the configuration
space, and using nearest-neighbors as antecedents. Such a
choice results in the so-called Voronoi bias of RRTs [2]. Both
experiments and theoretical analysis support this choice for
geometric planning. However, when moving to kinodynamic
planning, designing a metric that yields good antecedents
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Fig. 1. Illustration of the extension routine of randomizedplanners. To grow
the roadmap toward the samplex′, the planner selects a number of parents
PARENTS(x′) = {P1, P2, P3} from which it applies the STEER(Pi, x

′)
method.

becomes as challenging as the motion planning problem
itself, and the Euclidean norm becomes highly inefficient
(seee.g., [12] for an illustration in the case of the actuated
pendulum subject to torque bounds).

The next section discusses the various implementations of
the STEER sub-routine.

C. Classification of Steering Methods

We propose to classify existing steering methods into three
categories.Analytical steering is the best method but is
available only for a very limited class of systems.State-
based steeringis efficient but relies on inverse dynamics,
and thus unapplicable to most systems with non-holonomic
constraints.Control-basedsteering relies instead on forward
dynamics and can thus be applied to a wider range of
systems.

1) Control-based steering:compute a control function
u : [0, T ]→ Uadm and generate the corresponding trajectory
using forward dynamics. This approach does not guarantee
that the desired state is reached by the end of the trajectory. In
works such as [2], [8], random functionsu are sampled from
a family of primitives (e.g., piecewise-constant functions),
a number of them are tried and only the one bringing the
system closest to the target is retained. Linear-Quadratic
Regulation (LQR) [13], [14] is also control-based steering:
in this case,u is computed as the optimal policy for a linear
approximation of the system given a quadratic cost function.

2) State-based steering:interpolate a trajectorỹγ :
[0,∆t̃]→ C, for instance a Bezier curve matching the initial
and target configurations and velocities, and compute a con-
trol that makes the system track it. For fully-actuated system,
this is typically done using inverse dynamics. If no suitable
control exists, the trajectory is rejected. Note that both the
space Im(γ̃) and time ˙̃γ(t) information of the interpolated
trajectory have an effect on dynamic quantities, and thus the
existence of admissible controls. More sophisticated methods
such as Admissible Velocity Propagation [15] can be applied
to restrict the interpolation to space, computing time and
controls separately.

3) Analytical steering:with control-based steering, it is
easy to respect differential constraints but difficult to reach
the desired state. Conversely, with state-based steering,it



is easy to reach the desired state but difficult to enforce
differential constraints (for instance, inverse dynamicscannot
always be used with non-holonomic systems). For some
systems, steering functions satisfying both requirementsare
known, like Reeds and Shepp curves for cars. When it is the
case, the problem can be reduced to path planning [9].

D. Previous Proofs of Probabilistic Completeness

Randomized planners such as Rapidly-exploring Random
Trees (RTT) and Probabilistic Roadmaps (PRM) are popular
because they are simple to implement yet efficient in practice.
Proofs of probabilistic completeness come as another indi-
cator in their favor. However, one should beware of general
conceptions such as “RRT is probabilistically complete”:
as we will see, it is not always true for systems with
kinodynamic constraints. Let us review completeness results
that have been published for such systems.

Completeness of RRT planners has been established for
path planning[2], [3], [4]. In their proof, Hsu et al. quantified
the problem of narrow passages in configuration space with
the notion of (α, β)-expansiveness [4]. The two constants
α and β express a geometric lower bound on the rate of
expansion of reachability areas. The authors later extended
their solution to kinodynamic planning [8], using the same
notion of expansiveness, but this time in theX × T (state
and time) space with control-based steering. They established
that, whenα > 0 andβ > 0, their planner is probabilistically
complete. However, whetherα > 0 or α = 0 in theX × T
space remains undiscussed, and the problem of evaluating
(α, β) is deemed as difficult as the initial planning problem
[4].

LaValle et al. provided a completeness argument for
kinodynamic planning [2]. In their proof, they assumed the
existence of anattraction sequence, which is a covering of
the state space where two major problems of kinodynamic
planning, namely steering and antecedent selection (see
Section II-C), are already solved. However, conditions of
existence of such a sequence are not discussed.

These two examples highlight our concern about com-
pleteness proofs: in both cases, probabilistic completeness
is established under assumptions whose verification is at
least as difficult as the motion planning problem itself. This
observation does not question the quality of the associated
planners, which have also been checked experimentally.
Rather, it hints that too much of the complexity of kino-
dynamic planning has been abstracted into hypotheses. As a
result, these completeness proof do not help us understand
why these planners work (or don’t work) in practice.

Karaman et al. introduced their path planning algorithm
RRT* in [3] and extended it to kinodynamic planning with
differential constraints in [16], providing a sketch of proof for
the completeness of their solution. However, they assumed
that their planner had access to the optimal cost metric and
optimal local steering (wich means STEER(x1, x2) always
returns the optimal trajectory starting fromx1 and ending at
x2), which restricts the analysis to systems for which these
ideal solutions are known.

The same authors tackled the problem from a slightly
different perspective in [17]. They now assumed that the
PARENTS function computesw-weighted boxes, which are
abstractions of the system’s local controlability. It remains
unclear to us how these boxes can be computed or approx-
imated in practice, given that their definition involves the
joint flow of vector fields spanning the tangent space of the
system’s manifold. Although their set of assumptions is of
primary concern to us since we follow a similar approach
in Section III, they did not prove their theorem, arguing that
the reasoning was similar to the one in [3] for kinematic
systems.

To the best of our knowledge, as of yet, there is no com-
pleteness proof for kinodynamic planners using state-based
steering. We will establish such a result in the following
section.

III. C OMPLETENESS OFSTATE-BASED STEERING

K INODYNAMIC PLANNERS

A. Terminology

A function issmoothwhen all its derivatives exist and are
continuous. A functionf : A→ B between metric spaces is
Lipschitz when there exists a constantKf such that

∀(x, y) ∈ A, ‖f(x)− f(y)‖ ≤ Kf‖x− y‖.

Throughout the present paper, we will work within normed
vector spaces and‖ · ‖ will refer to the Euclidean norm
‖ · ‖2. We will also consistently denote byKf the (smallest
possible) Lipschitz constant of any Lipschitz functionf .

Let C denoten-dimensional configuration space, where
n is the number of degrees of freedom of the robot. We
will call state spacethe 2n-dimensional manifoldX of
configuration and velocity coordinates. In the present paper,
we only consider fully actuated systems. Let the control
input space (“control space” for short) be ann-dimensional
manifoldU . The dynamics of the robot follow the equations
of motion, which can be written in generalized coordinates
as

M(q)q̈ + C(q, q̇)q̇ + g(q) = u. (1)

Equivalently, the robot’s dynamics follow the time-invariant
differential system

ẋ(t) = f(x(t), u(t)), (2)

wherex(t) ∈ X and u(t) ∈ U . We will assume thatf is
Lipschitz continuous in both of its arguments. The setUadm

of admissible controls is assumed to be a compact subset of
U .

A trajectory is a continuous functionγ : [0, T ] → C. A
path is the image of a trajectory. An admissible trajectory is a
solution to the differential system (2). The kinematic motion
planning problem is to find a path in the collision-free subset
Cfree ⊂ C from an initial configurationqinit to any configu-
ration qgoal in a set of goals. Meanwhile, the kinodynamic
motion planning problem is to find an admissible trajectory
from qinit to qgoal, both avoiding obstacles and following the
system’s dynamics.



A control function t 7→ u(t) is said to haveδ-clearance
when its image is in theδ-interior of the set of admissible
controls,i.e., for any timet, B(u(t), δ) ⊂ Uadm.

We define the distance between a statex ∈ X and the
curveγ as:

distγ(x) := min
t∈[0,T ]

‖(γ, γ̇)(t)− x‖

Whenever considering two statesx andx′, we will write
x =: (q, q̇) andx′ =: (q′, q̇′). The prefix∆ will be used to
denote variations betweenx andx′, such as∆x := x′ − x,
∆q := q′ − q, and so on. Similarly, for two time instants
t < t′, we will write ∆t := t′ − t and∆g := g(t′) − g(t)
for any functiong.

B. Assumptions for the Completeness Theorem

Our model for anX -state randomized planner is given
by Algorithm 1 using state-based steering. We make the
following three assumptions on the system:

Assumption 1:The system is fully actuated.
Assumption 2:The set of admissible controlsUadm is

compact.
Assumption 3:The inverse of the differential constraintf

from Equation (2),i.e., the functionf−1 s.t.u = f−1(x, ẋ),
is Lipschitz in both of its arguments.

Assumption 1 is a pre-requisite for the functionf−1 used
in Assumption 3 to be well-defined. The latter assumption is
satisfied whenf is given by the dynamics equations (1) as
long as the matricesM(q) andC(q, q̇) have bounded norm,
and the gravity termg(q) is Lipschitz. Indeed, for a small
displacement betweenx andx′,

‖u′ − u‖ ≤ ‖M‖ ‖q̈′ − q̈‖+ ‖C(q, q̇)‖ ‖q̇′ − q̇‖
+Kg ‖q′ − q‖

(3)

Regarding Assumption 2, since torque constraints are our
main concern, we will make our proof of completeness for
(note that the comparison is component-wise)

Uadm := {u ∈ U , |u| ≤ τmax} ,

which is indeed compact. The generalization to an arbitrary
compact set presents no technical difficulty.

Let us now turn to the design of the interpolation routine.
We make the following three hypotheses:

Assumption 4:Interpolated trajectories̃γ are smooth Lip-
schitz functions, and their time-derivatives˙̃γ (i.e., interpo-
lated velocities) are also Lipschitz.

Assumption 5 (Local boundedness):We suppose that
there exists a constantη such that, for any(x, x′) ∈ X 2, the
interpolated trajectorỹγ : [0,∆t̃]→ C betweenx andx′ is
included in a ball of centerx and radiusη ‖x′ − x‖.

Assumption 6 (Acceleration compliance):The accelera-
tion of interpolated trajectories uniformly converges to the
discrete velocity derivative,i.e., there exists someν > 0 such
that, if γ̃ : [0,∆t̃]→ C results from INTERPOLATE(x, x′),
then

∀τ ∈ [0,∆t̃],

∥∥∥∥¨̃γ(τ) −
‖q̇‖

‖∆q‖
∆q̇

∥∥∥∥ ≤ ν ‖∆x‖

Assumption 4 is quite easy to satisfy. Assumption 5
bounds the position and velocity of interpolated trajecto-
ries with respect to the neighborhood ofx and x′, while
Assumption 6 bounds their acceleration with respect to the
discrete derivative of the velocity betweenx andx′. These
three assumptions are design guidelines for the interpolation
routine. They ensure that the resulting local planner will
always look for smaller trajectories when working in smaller
neighborhoods. Note that we consider fully-actuated (thus
small-space controllable) systems for which such solutions
always exist.

C. Verifying the Assumptions on the Double Pendulum

To illustrate the practicality of these assumptions, let us
consider the standard example of a fully-actuated double
pendulum under torque constraints.

1) System assumptions:When pendulum links have
mass m and length l, the gravity term g(θ1, θ2) =
mgl
2 [sin θ1 + sin(θ1 + θ2) sin(θ1 + θ2)] is Lipschitz with

constantKg = 2mgl. Meanwhile, the inertial term is
bounded by‖M‖ ≤ 3ml2 and, when joint angular velocities
are bounded byω, the norm of the Coriolis tensor is
bounded by2ωml2. Therefore, from Equation (3), there exist
a Lipschitz constantKf−1 .

2) Interpolation: A simple second-order polynomial in-
terpolation is given by:

γ(t) =
∆q̇

2∆t
t2 +

(
∆q

∆t
−

∆q̇

2

)
t+ q, (4)

where∆t := ‖∆q‖
‖q̇‖ . This expression only matches position

and acceleration constraints (in particular, it does not work
when ‖q̇‖ = 0). One can use higher-order polynomials
in a similar fashion to take velocities into account as
well. All polynomials satisfy the smoothness Assumption
4. Meanwhile, Assumption 6 is verified as the dominating
term in (4) is exactly the discrete velocity time-derivative.
Finally, one can check with no computational hassle that
‖γ(t)− γ(0)‖ ≤ (1+‖∆q̇‖ /‖q̇‖) ‖∆q‖ → 0 when‖∆x‖ →
0.

D. Completeness Theorem

We can now state our main result:
Theorem 1:Consider a time-invariant differential system

(2) with Lipschitz-continuousf and full actuation over a
compact set of admissible controlsUadm. Suppose that the
kinodynamic planning problem between two statesxinit and
xgoal admits a smooth Lipschitz solutionγ : [0, T ]→ C with
δ-clearance in control space. LetK denote a randomized
motion planner (Algorithm 1) using state-based steering and
a locally bounded, Lipschitz, acceleration-compliant interpo-
lation primitive.K is probabilistically complete.

Let us start the proof of this theorem with three lemmas.
Detailed proofs of these lemmas are provided in the supple-
mentary material.1

1 https://scaron.info/research/icra-2014.html



Lemma 1:Let g : [0, T ]→ Rk denote a smooth Lipschitz
function. Then, for any(t, t′) ∈ [0, T ]2,

∥∥∥∥ġ(t)−
g(t′)− g(t)

|t′ − t|

∥∥∥∥ ≤
Kg

2
|t′ − t|.

Lemma 2: If there exists a trajectoryγ with δ-clearance
in control space, then there existsδ′ < δ and a trajectoryγ′

with δ′-clearance in control space such thatinf t ‖γ̈′(t)‖ > 0.

Lemma 3: If there exists a trajectoryγ with δ-clearance
in control space, then there existsδ′ < δ and a trajectoryγ′

with δ′-clearance in control space such thatinf t ‖γ̇′(t)‖ > 0.

Let γ : [0, T ] → C, t 7→ γ(t) denote a smooth Lipschitz
admissible trajectory fromxinit to xgoal with δ-clearance in
control space. We define:
{

Ṁ := maxt ‖γ̇(t)‖
ṁ := mint ‖γ̇(t)‖

{
M̈ := maxt ‖γ̈(t)‖
m̈ := mint ‖γ̈(t)‖

From lemmas 2 and 3, we can suppose without loss of
generality thatṁ > 0 and m̈ > 0. Consider two statesx
andx′ and the corresponding time instants on the trajectory

{
t := argmint ‖(γ(t), γ̇(t))− x‖ ,
t′ := argmint ‖(γ(t), γ̇(t))− x′‖ .

We can suppose w.l.o.g. thatt < t′. First, note that there
existsδt1 > 0 such that, for any∆t ≤ δt1,

‖∆γ‖

∆t
≥

ṁ

2
,
‖∆γ̇‖

∆t
≥

m̈

2
,
‖∆γ̇‖

‖∆γ‖
≤

2M̈

ṁ
.

Indeed, the three functions∆t 7→ ‖∆γ‖
∆t

, ∆t 7→ ‖∆γ̇‖
∆t

and
∆t 7→ ‖∆γ̇‖

‖∆γ‖ . are continuous over the compact set[0, T ],
hence uniformly continuous, and their limits when∆t → 0

are respectively‖γ̇(t)‖ ≥ ṁ, ‖γ̈(t)‖ ≥ m̈ and ‖γ̈(t)‖
‖γ̇(t)‖ ≤

M̈
ṁ

.
In what follows, we will then suppose that∆t is smaller
than this first thresholdδt1.

Let γ̃ : [0,∆t̃] → C denote the result of
INTERPOLATE(x, x′). Forτ ∈ [0,∆t̃], the torque required
to follow the trajectoryγ̃ is ũ(τ) := f(γ̃(τ), ˙̃γ(τ), ¨̃γ(τ)).
Since Im(u) ⊂ intδ(T ),

|ũ(τ)| ≤ |ũ(τ) − u(t)|+ |u(t)|

≤
∣∣∣f(γ̃(τ), ˙̃γ(τ), ¨̃γ(τ)) − f(γ(t), γ̇(t), γ̈(t))

∣∣∣
+ (1 − δ) τmax,

where the comparison here is component-wise. If the first
term in this upper bound is≤ δ τmax, then the system will
be able to track̃γ at timeτ . We can rewrite it as follows:
∣∣∣f(γ̃(τ), ˙̃γ(τ), ¨̃γ(τ)) − f(γ(t), γ̇(t), γ̈(t))

∣∣∣

≤
∥∥∥f(γ̃(τ), ˙̃γ(τ), ¨̃γ(τ)) − f(γ(t), γ̇(t), γ̈(t))

∥∥∥
∞

≤ Kf

∥∥∥(γ̃(τ), ˙̃γ(τ)) − (γ(t), γ̇(t))
∥∥∥ +Kf

∥∥∥¨̃γ(τ)− γ̈(t)
∥∥∥

≤ Kf [(η + ν) ‖∆x‖ + distγ(x)]︸ ︷︷ ︸
distance term (D)

+Kf

∥∥∥∥
‖q̇‖

‖∆q‖
∆q̇ − γ̈(t)

∥∥∥∥
︸ ︷︷ ︸

acceleration term (A)

, (⋆)

where we used the triangular inequality, the Lipschitz condi-
tion on f , as well as local boundedness (Assumption 5) and
acceleration compliance (Assumption 6) of the interpolated
trajectory. The transition from the norm‖·‖∞ to ‖·‖ is
possible because all norms ofRn are equivalent (a change
in norm will be reflected by a different constantKf ).

1) Bounding the acceleration term:the discrete velocity
derivative ‖q̇‖

‖∆q‖∆q̇ can be further decomposed into:
∥∥∥∥
‖q̇‖

‖∆q‖
∆q̇ − γ̈(t)

∥∥∥∥ ≤

∥∥∥∥∆q̇
‖q̇‖

‖∆q‖
−∆γ̇

‖γ̇(t)‖

‖∆γ‖

∥∥∥∥

+
‖∆γ̇‖

‖∆γ‖

∣∣∣∣‖γ̇(t)‖ −
‖∆γ‖

∆t

∣∣∣∣+
∥∥∥∥
∆γ̇

∆t
− γ̈(t)

∥∥∥∥ .

Let us call these three terms (A1), (A2) and (A3). From
Lemma 1,(A3) ≤ Kγ̇

2 ∆t and

(A2) ≤
Kγ̇

2

‖∆γ̇‖

‖∆γ‖
∆t ≤

Kγ̇M̈

ṁ
∆t.

Then, definingδt2 := min
(
δt1,

δτmax
2Kγ̇

, δṁτmax

4M̈Kγ̇

)
, we have

that, for any∆t < δt2, (A2) and (A3) are upper bounded by
δτmax
4Kf

. The expression∆q̇ ‖q̇‖
‖∆q̇‖ in (A1) represents the discrete

derivative of the velocityq̇ betweenq andq′ (its continuous
analog would be‖q̇‖ dq̇

‖q̇‖ dt = dq̇
dt ). Thus, (A1) can be seen as the

deviation between the discrete accelerations ofγ̃ andγ. Let
us decompose this expression in terms of norm and angular
deviation: (A1) is less than
∥

∥

∥

∥

(

∆γ̇

‖∆γ̇‖
−

∆q̇

‖∆q̇‖

)

‖γ̇‖ ‖∆γ̇‖

‖∆γ‖
+

∆q̇

‖∆q̇‖

(

‖∆γ̇‖ ‖γ̇‖

‖∆γ‖
−

‖∆q̇‖ ‖q̇‖

‖∆q‖

)
∥

∥

∥

∥

that is,

2
‖γ̇‖ ‖∆γ̇‖

‖∆γ‖

(
1− cos ̂(∆q̇,∆γ̇)

)

︸ ︷︷ ︸
angular deviation term (θ)

+

∣∣∣∣
‖γ̇‖ ‖∆γ̇‖

‖∆γ‖
−
‖∆q̇‖ ‖q̇‖

‖∆q‖

∣∣∣∣
︸ ︷︷ ︸

norm deviation term (N)

Since the factor2‖γ̇‖‖∆γ̇‖
‖∆γ‖ before the angular deviation (θ) is

bounded by4ṀM̈
ṁ

, ̂(∆q̇,∆γ̇) → 0 is a sufficient condition
for (θ) → 0. We will show that both the norm and angular
deviation terms tend to zero as∆t→ 0.

2) Bounding the norm (N):let us suppose that distγ(x)
and distγ(x′) are≤ 1

2ṁ∆t2 =: δρ. We can expand (N) as
follows:

(N) ≤
‖∆γ̇‖

‖∆γ‖
|‖γ̇‖ − ‖q̇‖|+ ‖q̇‖

∣∣∣∣
‖∆γ̇‖

‖∆γ‖
−
‖∆q̇‖

‖∆q‖

∣∣∣∣

≤
2M̈

ṁ
δρ+

‖q̇‖

‖∆γ‖ ‖∆q‖
|‖∆γ̇‖ ‖∆q‖ − ‖∆q‖ ‖∆q̇‖|

≤
2M̈

ṁ
δρ+

‖q̇‖ (‖∆γ‖+ ‖∆γ̇‖)δρ

‖∆γ‖ ‖∆q‖

≤
2M̈

ṁ
δρ+ δρ

‖q̇‖

‖∆q‖

[
1 +

2M̈

ṁ

]

≤
2M̈

ṁ
δρ+ δρ

‖γ̇‖+ δρ

‖∆γ‖ − δρ

[
1 +

2M̈

ṁ

]



≤

[
M̈∆t+

(ṁ+ 2M̈)(2Ṁ + ṁ∆t2)

ṁ2(1−∆t)

]
∆t

This last bound is expressed only in terms of∆t and
constantsṁ, Ṁ and M̈ . Since it tends to zero as∆t → 0,
there exists some durationδt3 ≤ δt2 such that, for any
∆t ≤ δt3, (N) ≤ δτmax

8Kf
.

3) Bounding the angular deviation:simple vector geom-
etry shows that

sin ̂(∆q̇,∆γ̇) ≤
distγ(x) + distγ(x′)

‖∆γ̇‖
≤

δρ

m̈∆t
≤

ṁ

2m̈
∆t.

Since 1 − cos θ < sin θ for any θ ∈ [0, π/2], there exists
a durationδt4 ≤ δt3 such that∆t < δt4 ⇒ (θ) ≤ δτmax

8Kf
.

Combining our bounds on terms (A2), (A3), (N) and (θ),
we have showed so far that, when∆t is small enough, the
acceleration term is upper bounded by3

4δτmax.
4) Bounding the distance term (D):the remaining term

is proportional to

(η + ν) ‖∆x‖+ distγ(x) ≤ (2δρ+ ‖∆γ‖)(η + ν) + δρ

≤
Kγ(η + ν) + 3ṁ∆t

2
∆t

Hence, there exist a finalδt ≤ δt4 such that, when∆t < δt,
this last bound becomes≤ δτmax

4Kf
as well. Combining all our

bounds, we have established the existence of a durationδt
such that∆t ≤ δt⇒ |ũ(τ)| ≤ τmax.

5) Link with completeness:let us summarize our reason-
ing so far. We have iteratively constructed a durationδt and
a radiusδρ, independent fromt or t′, such that, as soon as
|t′ − t| < δt, distγ(x) < δρ and distγ(x′) < δρ, the system
can track the trajectory INTERPOLATE(x, x′).

The proof of completeness of the whole randomized
planner follows directly from this construction. Let us denote
by Bt := B((γ, γ̇)(t), δρ), the ball of radiusδρ centered on
(γ, γ̇)(t) ∈ X . Suppose that the roadmap contains a state
x ∈ Bt, and lett′ := min(T, t+ δt). If the planner samples
a statex′ ∈ Bt′ , the interpolation betweenx andx′ will be
successful andx′ will be added to the roadmap. Since the
volume ofBt′ is non-zero for the Lebesgue metric, the event
{SAMPLE(Xfree) ∈ Bt′} will happen with probability one
as the number of extensions goes to infinity.

At the initialization of the planner, the roadmap is reduced
to xinit = (γ(0), γ̇(0)). Therefore, using the property above,
by induction on the number of time stepsδt, the last state
(γ(T ), γ̇(T )) will be eventually added to the roadmap with
probability one, which establishes the probabilistic complete-
ness of the randomized planner.�

IV. CONCLUSION

The goal of the present paper was to clarify the panorama
of completeness results in randomized kinodynamic plan-
ning. We noted that existing proofs usually rely on assump-
tions too strong to be verified on practical systems. We
proposed a classification of the various types of kinodynamic
constraints and planning methods used in the field, and
went on to prove probabilistic completeness for an important
class of planners, namely those which steer by interpolating

system trajectories in the state space. Along the way, our
analysis also provided some insights into the design of such
interpolation functions.

The proof strategy that we used,i.e., the inclusion of the
solution trajectory into a “tube” of non-zero volume, is not
new. It is related to the “attraction sequence” hypothesized
in [2], and can be traced back to seminal papers such as [7].
However, to the best of our knowledge, our work is the first
theoretical analysis to establish the existence and explicitely
construct such a bounding tube. This construction is an extra
link with reality: for a given system, one can actually check
for full actuation, compacity of the control set and Lips-
chitz continuity of the dynamics function. Similarly, when
designing her interpolation function, one can easily check
for properties such as local boundedness and acceleration
compliance.
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