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Abstract— The panorama of probabilistic completeness re- To make completeness proofs more useful in practice, it
sults for kinodynamic planners is still confusing. Most exst- s thus necessary to estabish a classification of the differe
ing completeness proofs require strong assumptions that ar types of constraints and planning methods, and then attack

difficult, if not impossible, to verify in practice. To make . o
completeness results more useful, it is thus sensible to abtish each class with specific proofs and hypotheses that can be

a classification of the various types of constraints and plamng  More _easily Checked_. In Sectiqn I, we propose such a cIa_s—
methods, and then attack each class with specific proofs and sification based on kinodynamic constraints (non-holomomi

hypotheses that can be verified in practice. We propose such a or dynamics-bound-based) and planning methods (depending
classification, and provide a proof of probabilistic compléeness upon their underlying steering methods: analytic, control

for an important class of planners, namely those whose steieig . .
method is based on the interpolation of system trajectories based or state-based). We also discuss the shortcomings of

in the state space. We also provide design guidelines for the €xisting completeness proofs. Then, in section Ill, we prov
interpolation function and discuss two criteria arising from our ~ a completeness result for the class of state-based steering

analysis: local boundedness and acceleration compliance. planners applied to systems with dynamics bounds. Finally,
| INTRODUCTION in section 1V, we conclude by discussing .the_implications of
’ our results as well as future research objectives.
A deterministicmotion planning algorithm (or planner)
is said to becompleteif it returns a solution to a motion
planning problem whenever one exists (seg, [1]). A o ) . i
randomizedplanner is said to berobabilistically complete A. Classification of Kinodynamic Constraints
if the probability of returning a solution tends to one as Motion planning was first concerned only wigeometric
execution time goes to infinity. The concepts of completesonstraints such as obstacle avoidance or those imposed by
ness and probabilistic completeness, although theotdtjca the kinematic structures of manipulators [5], [6], [4], [2]
nature, are also of practical interest: proving them resgguir More recentlykinodynamicconstraints, which stem from the
one to specify what assumptions are needed for a planmdynamical equationshe systems are subject to, have also
to find solutionsj.e., what types of problems can be solvedbeen taken into account [7], [2], [8].
This provides more general guarantees than empiricalteesul  Kinodynamic constraints are more difficult to deal with
Experiments can show that a planner works for a givethan geometric constraints because they cannot in general
combination of robot, environment, task, (set of tweaks anbde expressed using onlgonfiguration-space variables
heuristics), but a proof of completeness is a certificaté thauch as the joint angles of a manipulator, the position and
the planner works for a whole set of problems, the size of thifie orientation of a mobile robot, etc. They indeed involve
set being determined by the assumptions required to maké&gher-order derivativesf the configuration-space variables.
the proof (the weaker the assumptions, the larger the set ldbwever, these derivatives appear in the constraints in two
solvable problems). main different ways, which involve different types of diffi-
While the probabilistic completeness of randomized plarsulties:
ners has been well established for systems \ggbmetric 1) Non-holonomic constraint@are non-integrableequal-
constraints (such as obstacle avoidance), proofs for mgste ity constraints on higher-order derivatives of the
with kinodynamic constraints [2], [3], [4] have not yet configuration-space variables. They can be first-order,
reached the same level of generality: in many proofs, the as found in wheeled vehicles [9], or second-order, as
assumptions made are quite strong and difficult to verify on  found in under-actuated manipulators or space robots.
practical systems (as a matter of fact, none of the prewousl 2) Bounds on dynamic quantitieseinequalityconstraints
mentioned works verified their hypotheses on non-trivial  on higher-order derivatives of the configuration-space
systems). One of the reasons for this lies in the large wariet  variables. These include torque bounds for manipula-
of kinodynamic constraints and planning methods that can tors [10], ZMP constraints for walking robots, friction
be found. constraints in grasp synthesis, etc.
1 . N Some authors have considered systems that are subject to
Department of Mechano-Informatics, The University of Tokyapan . .
25chool of Mechanical and Aerospace Engineering, Nanyanbitdog- both types of constraints, such as under-actuated manipula
ical University, Singapore tors with torque bounds [11].
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II. CLASSIFICATION OF KINODYAMIC CONSTRAINTS
AND OF STEERING METHODS



We shall see in section II-C that control-based steering
is more adapted to systems with non-holonomic constraints
while state-based steering is more adapted to systems with
inequality constraints.

bl
STEER(P,, X')

B. Structure of Randomized Planners

Randomized planners such as such as Probabilistic
Roadmaps (PRM) [6] or Rapidly-exploring Random Trees ¥ = —~&--..____. oo
(RRT) [2] build a roadmap on the state space. In PRM, STEER(Py, ')
multiple samples are drawn from the free state space, and ) ) ) )
local steering is used to connect nearby states. Meanwhifg b Justaton of b exension ouine ofrandoniphoers Togrow
starting from an initial stateri,;, RRT grows a tree by PARENTSz') = {Pi, P», P53} from which it applies the STEE®;, ')
sampling random states and connecting them to their closeégtthod.
neighbor in the tree. Both behaviors are represented by the
extensionstep, as given by Algorithm 1 below. It has the
following sub-routines (see Fig. 1 for an illustration):

o Sampling SAMPLE(S): randomly samples from
set.S;

o Antecedent selectioRPARENTSz’,V): returns a set
of statesxz belonging to the roadmap’, from which
steering towards’ will be attempted,;

o Local steeringSTEERz, 2'): tries to steer the system - cjassification of Steering Methods

from z towardsz’. If successful, returns a new node ) o ) )
Zsteer Feady to be added to the roadmap. Depending on We propose to classify existing steering methods into three

the planner, the successfulness criterion neay, be categories.Analytical steeringis the best method but is
“reach exl’;lctly” or “get close enough to’" ' available only for a very limited class of systenfState-

. . . .Pased steerings efficient but relies on inverse dynamics,
The design of each sub-routine greatly impacts the quallg . . :
. nd thus unapplicable to most systems with non-holonomic
and even the completeness of the resulting planner.

constraintsControl-basedsteering relies instead on forward
dynamics and can thus be applied to a wider range of

X'=SAMPLE()

becomes as challenging as the motion planning problem
itself, and the Euclidean norm becomes highly inefficient
a (seee.g, [12] for an illustration in the case of the actuated
pendulum subject to torque bounds).

The next section discusses the various implementations of
the STEER sub-routine.

Algorithm 1 Extension step in randomized planners

el i systems.
Require: initial node zini, number of iterationsV 1) Control-based steeringcompute a control function
L (V. E) « ({zini},0) u : [0, T] — Uagm and generate the corresponding trajectory
2: for N stepsdo using forward dynamics This approach does not guarantee
3 rand < SAMPLE(Xiree) that the desired state is reached by the end of the trajettory
4 Xparents ¢ ,PARENTSIfandv V) works such as [2], [8], random functiomsare sampled from
5. for Zparent N Xparens do a family of primitives €.g, piecewise-constant functions),
6: steer <~ STEERZparent Trand) a number of them are tried and only the one bringing the
v if Zsieer is a valid statehen system closest to the target is retained. Linear-Quadratic
8 V = VU {Zseet Regulation (LQR) [13], [14] is also control-based steering
o E - EU{(zparent Zsteer } in this caseu is computed as the optimal policy for a linear
10: end if approximation of the system given a quadratic cost function
i; en?jnfc(j)rfor 2) State-based steeringinterpolate a trajectoryy

[0, At] — C, for instance a Bezier curve matching the initial
and target configurations and velocities, and compute a con-
trol that makes the system track it. For fully-actuatedexyst

In the literature, SAMPLE is usually implemented ashis is typically done using inverse dynamics. If no suigabl
uniform random sampling. Some authors have suggested¢ontrol exists, the trajectory is rejected. Note that bdié t
use adaptive sampling to improve the performance of RR3pace Infy) and time~(¢) information of the interpolated
or PRM planners. trajectory have an effect on dynamic quantities, and thas th

In geometric planners, PARENTS is usually implementeéxistence of admissible controls. More sophisticated pdth
by defining a metric€.g, the /> norm) on the configuration such as Admissible Velocity Propagation [15] can be applied
space, and using nearest-neighbors as antecedents. Sudh eestrict the interpolation to space, computing time and
choice results in the so-called Voronoi bias of RRTs [2].HBot controls separately.
experiments and theoretical analysis support this chaice f 3) Analytical steering:with control-based steering, it is
geometric planning. However, when moving to kinodynamieasy to respect differential constraints but difficult taale
planning, designing a metric that yields good antecedentise desired state. Conversely, with state-based steeiting,

13: return (V. E)




is easy to reach the desired state but difficult to enforce The same authors tackled the problem from a slightly
differential constraints (for instance, inverse dynanc@snot different perspective in [17]. They now assumed that the
always be used with non-holonomic systems). For somARENTS function computew-weighted boxeswvhich are
systems, steering functions satisfying both requiremardgs abstractions of the system’s local controlability. It rensa
known, like Reeds and Shepp curves for cars. When it is theaclear to us how these boxes can be computed or approx-
case, the problem can be reduced to path planning [9]. imated in practice, given that their definition involves the
) o joint flow of vector fields spanning the tangent space of the

D. Previous Proofs of Probabilistic Completeness system’s manifold. Although their set of assumptions is of

Randomized planners such as Rapidly-exploring Randoptimary concern to us since we follow a similar approach
Trees (RTT) and Probabilistic Roadmaps (PRM) are populan Section 1lI, they did not prove their theorem, arguingttha
because they are simple to implement yet efficient in practicthe reasoning was similar to the one in [3] for kinematic
Proofs of probabilistic completeness come as another indiystems.
cator in their favor. However, one should beware of general To the best of our knowledge, as of yet, there is no com-
conceptions such as “RRT is probabilistically complete”pleteness proof for kinodynamic planners using statecbase
as we will see, it is not always true for systems withsteering. We will establish such a result in the following
kinodynamic constraints. Let us review completeness t®sukection.
that have been published for such systems.

Completeness of RRT planners has been established for
path plannind?2], [3], [4]. In their proof, Hsu et al. quantified
the problem of narrow passages in configuration space with Terminology

the notion of (a, §)-expansiveness [4]. The two constants A function is smoothwhen all its derivatives exist and are
o and 3 express a geometric lower bound on the rate dfontinuous. A functiory : 4 — B between metric spaces is

expansion of reachability areas. The authors later extendgipschitz when there exists a constaiit such that
their solution to kinodynamic planning [8], using the same

notion of expansiveness, but this time in thex 7 (state V(z,y) € A, |If(x) — fW)] < Kyllz -yl

and time) space with control-based steering. They estatlis r,,,ghout the present paper, we will work within normed
that, whern > 0 and > 0, their planner is probabilistically \actor spaces ang - | will refer to the Euclidean norm

complete. However, whether > 0 ora =0 inthe X' 7 | .||, we will also consistently denote by the (smallest

space remains undiscussed, and the problem of evaluatigssipie) Lipschitz constant of any Lipschitz functign
(@, §) is deemed as difficult as the initial planning problem | ot ¢ genoten-dimensional configuration space, where

[4]- n is the number of degrees of freedom of the robot. We

LaValle et al. provided a completeness argument Qg cajl state spacethe 2n-dimensional manifoldX’ of

kinodynamic planning [2]. In their proof, they assumed the.,nfiqration and velocity coordinates. In the present pape
existence of arattraction sequencewhich is a covering of e only consider fully actuated systems. Let the control

the state space where two major problems of kinodynamjﬁput space (“control space” for short) be ardimensional

planning, namely steering and antecedent selection (Sgynifoldz/. The dynamics of the robot follow the equations

Section 1I-C), are already solved. However, conditions 0f¢ motion, which can be written in generalized coordinates
existence of such a sequence are not discussed. as

These two exzf\mples highlight our concern about com- M(q)§+ C(q,d)d + g(q) = . 1)
pleteness proofs: in both cases, probabilistic complstene
is established under assumptions whose verification is Bfuivalently, the robot's dynamics follow the time-invani
least as difficult as the motion planning problem itself.sThi differential system
observation does not question the quality of the associated . _
planners, which have also been checked experimentally. () = fla(®),u(®), 2)
Rather, it hints that too much of the complexity of kino-wherez(t) € X andu(t) € U. We will assume thaff is
dynamic planning has been abstracted into hypotheses. A&iaschitz continuous in both of its arguments. The &g,
result, these completeness proof do not help us understasfdadmissible controls is assumed to be a compact subset of
why these planners work (or don’t work) in practice. Uu.

Karaman et al. introduced their path planning algorithm A trajectory is a continuous function : [0,7] — C. A
RRT* in [3] and extended it to kinodynamic planning with path is the image of a trajectory. An admissible trajecterg i
differential constraints in [16], providing a sketch of pféor ~ solution to the differential system (2). The kinematic roati
the completeness of their solution. However, they assum@ianning problem is to find a path in the collision-free subse
that their planner had access to the optimal cost metric aidgee C C from an initial configurationy,,;; to any configu-
optimal local steering (wich means STEER, z,) always ration ¢, in a set of goals. Meanwhile, the kinodynamic
returns the optimal trajectory starting fram and ending at motion planning problem is to find an admissible trajectory
x2), which restricts the analysis to systems for which thesEom g¢i,it t0 ¢s0a1, bOth avoiding obstacles and following the
ideal solutions are known. system’s dynamics.

IIl. COMPLETENESS OFSTATE-BASED STEERING
KINODYNAMIC PLANNERS



A control functiont — w(¢) is said to have)-clearance Assumption 4 is quite easy to satisfy. Assumption 5
when its image is in thé-interior of the set of admissible bounds the position and velocity of interpolated trajecto-

controls,i.e., for any timet, B(u(t),d) C Uadm- ries with respect to the neighborhood efand z’, while
We define the distance between a state X and the Assumption 6 bounds their acceleration with respect to the
curve~ as: discrete derivative of the velocity betweenand x’. These
_ ) : three assumptions are design guidelines for the intelipalat
disty (z) = re[0.T] 1(v:3) () = =l routine. They ensure that the resulting local planner will

always look for smaller trajectories when working in smalle
neighborhoods. Note that we consider fully-actuated (thus
small-space controllable) systems for which such solgtion
always exist.

Whenever considering two statesandz’, we will write
x =:(q,q) anda’ =: (¢/,¢'). The prefixA will be used to
denote variations betweenandz’, such asAz := 2’ — z,
Aq := ¢’ — ¢, and so on. Similarly, for two time instants
t < t', we will write At :=t —¢ andAg := g(t') — g(¢)

} C. Verifying the Assumptions on the Double Pendulum
for any functiong.

To illustrate the practicality of these assumptions, let us
B. Assumptions for the Completeness Theorem consider the standard example of a fully-actuated double
Our model for anX-state randomized planner is givenpendulum under torque constraints.
by Algorithm 1 using state-based steering. We make the 1) System assumptionsWhen pendulum links have

following three assumptions on the system: mass m and length /, the gravity term g(6;,6;) =
Assumption 1:The system is fully actuated. ngl [sinf; 4 sin(fy + 62) sin(f; + 02)] is Lipschitz with
Assumption 2:The set of admissible controlagm is constant K, = 2mgl. Meanwhile, the inertial term is

compact. bounded by||M || < 3mi? and, when joint angular velocities

Assumption 3:The inverse of the differential constraifit are bounded byw, the norm of the Coriolis tensor is
from Equation (2)j.e,, the functionf ! s.t.u = f~!(x,4), bounded by2wmi?. Therefore, from Equation (3), there exist
is Lipschitz in both of its arguments. a Lipschitz constanf(;-..

Assumption 1 is a pre-requisite for the functign! used 2) Interpolation: A simple second-order polynomial in-
in Assumption 3 to be well-defined. The latter assumption igerpolation is given by:
satisfied whenf is given by the dynamics equations (1) as Ag Ag  Ag
long as the matriced/(q) andC(q, ¢) have bounded norm, ~y(t) = Et2 + (E — 7) t+q, 4)
and the gravity termy(q) is Lipschitz. Indeed, for a small

displacement between anda’, where At := %. This expression only matches position
[ —ul < MG =gl + [IC(g, DI — qll and acceleration constraints (in particular, it does notkwo
+K,|l¢ —q| () when llgll = 0). One can use higher-order polynomials

] } ) ) in a similar fashion to take velocities into account as
Regarding Assumption 2, since torque constraints are olfa|| - All polynomials satisfy the smoothness Assumption

main concern, we will make our proof of completeness o} - \1eanwhile, Assumption 6 is verified as the dominating
(note that the comparison is component-wise) term in (4) is exactly the discrete velocity time-derivativ
Unam = {u €U, |u| < Tmax} Finally, one can check with no computational hassle that

L o (@) =) < A+[[Ag] /l4]) | Agll — 0 when[| Az|| —
which is indeed compact. The generalization to an arbitrary

compact set presents no technical difficulty.

Let us now turn to the design of the interpolation routinep. Completeness Theorem
We make the following three hypotheses:

Assumption 4:Interpolated trajectories are smooth Lip-
schitz functions, and their time-derivativés(i.e., interpo-
lated velocities) are also Lipschitz.

We can now state our main result:
Theorem 1:Consider a time-invariant differential system
(2) with Lipschitz-continuousf and full actuation over a

Assumption 5 (Local boundednessye suppose that compact set of admissible contrdlggm. Suppose that the

there exists a constantsuch that, for anyx,z’) € X2, the kinodynamic planning problem between two statgg and

interpolated trajectoryj : [0, At] — C betweenr anda’ is 902 admits a smooth Lipschitz solution: [0,T] — C with
’ o-clearance in control space. L& denote a randomized

included in a ball of center and radiu F—x.
sl — motion planner (Algorithm 1) using state-based steerirg) an

Assumption 6 (Acceleration compliancéhe accelera- locally bounded. Linschi erati larei
tion of interpolated trajectories uniformly converges be t a locally bounded, Lipsc |tz_, acce eration-complianerpo-
lation primitive. IC is probabilistically complete.

discrete velocity derivativé,e., there exists some > 0 such

that, if 5 : [0, A#] — C results from INTERPOLATEz, /) Let us start the proof of this theorem with three lemmas.
then ' "7 7" Detailed proofs of these lemmas are provided in the supple-

mentary materiat.

V1 € [0, At],

) - | < vijae
HAQH Lhttps://scaron.infol/research/icra-2014. ht n



Lemma 1:Let g : [0,7] — R* denote a smooth Lipschitz where we used the triangular inequality, the Lipschitz ¢ond

function. Then, for an)(t t') € [0,7)?, tion on f, as well as local boundedness (Assumption 5) and
g(t) K acceleration compliance (Assumption 6) of the interpalate
H - |t' " ‘ < 7g|t’—t|. trajectory. The transition from the norr||,, to |- is

possible because all norms Bf* are equivalent (a change

Lemma 2:1f there exists a trajectory with J-clearance i, norm will be reflected by a different constaft).

in control space, then there exis{s< ¢ and a trajectoryy’
with ¢’-clearance in control space such thaf, [|5(¢)[| > 0. 1) Bounding the acceleration ternthe discrete velocity
Lemma 3:1If there exists a trajectory with -clearance derivative ”q” 7A¢ can be further decomposed into:

in control space, then there exis{s< ¢ and a trajectoryy’ g H 14l 17|
with §’-clearance in control space such th&t |5/ (¢)|| > 0 H HAq H y )H < HA ||Aqq|| A% HWAVH H

Let~ : [0,T] — C,t — ~(t) denote a smooth Lipschitz
admissible trajectory frorxiyi t0 zgoar With d-clearance in HA”Y” I5@)]| — ||A”YH ‘ - H
control space. We define: HAVH AL

M = max, 5]l M = max 5| Let us call these}ghree terms (Al), (A2) and (A3). From

{ i = ming [[5(0)] { i o= ming 5 Lemma L,(A3) < SrAtand

From lemmas 2 and 3, we can suppose without loss of K | A9 KM
. . . ) (A2) < —L— At < At.

generality thati» > 0 ands» > 0. Consider two states 2 || Ayl

andz’ and the corresponding time instants on the trajector
'¥hen definingdt, := min (0t;, oo 9W7mx) - we have

. 2K
{ ¢ = A miny |[(y(t )’7(t)) - I,H that, for anyAt < dt,, (A2) and (A3) aré]\gé{per bounded by
t = argming [|(y(£), 7(t)) — 2| ‘Sijj The expressior\g H”chlzlll in (A1) represents the discrete
We can suppose w.l.o.g. that< ¢'. First, note that there derivative of the velocity; betweeng and¢’ (its continuous
existsot; > 0 such that, for anyAt < 6t4, analog would b% = %). Thus, (A1) can be seen as the
||A7|| 1A% _ i |A%] 20T deviation between the discrete accelerationg ahd~. Let
==, e 1= e 2 us decompose this expression in terms of norm and angular
At T2 At T2 AT om deviation: (A1) is less than

Indeed, the three functionas — 1220 A¢ s 1231 ang H( Ag ) IFILIAY | _Ag (HA"YH I 1Ag]] HQH)H
At are continuous over the compact $et77, 141 TAGL) A 7 A\ 11A7] [Adg]]

Ay

hence uniformly continuous, and their limits whé&xt — 0 that is,
YOI ~ A
> > < . . . .

are respectivelify(1)]] 2 i, 150l = 1 and ey < - 15 44 AR o IBIAYL IAG] 4]
In what follows, we will then suppose thakt is smaller 1Al 1 —cos (Ag, AY) ) + 1A - Aq|
than this first thresholdt

- ~ . angular deviation termé) norm deviation term (N)

Let ¥ : [0,Atff — C denote the result of

INTERPOLATE(z, 2'). ForT € [0, Af], the torque required Since the facto ”*””ﬁ“‘ before the angular deviatiod)(is
to follow the trajectoryy is u(r) := f(3(7),5(7),7(7)). N

Since Infu) c inty (7). bounded by4MM (Ag,A¥%) — 0 is a sufficient condition

for (#) — 0. We will show that both the norm and angular

[u(r)| < |u(r) —u(t)| + |u(t)| deviation terms tend to zero dst — 0.
< [FE),A(),A3(r) - f(v(f)d(t)ﬁ(f))’ 2) Bounding the norm (N)iet us suppose that digtr)
(1= 0) Tmax and dist (') are < 1mAt* =: §p. We can expand (N) as
' follows:
where the comparison here is component-wise. If the first A A Ad
- e . : IAY] [AY] _ [1Aq]]
term in this upper bound is. § Tmax, then the system will (N) < 1291] A1 = gl + llqll a1 12l

be able to tracky at time . We can rewrite it as follows:

L 2M 4l . :
FEEAG).30) ~ £60,40,50) = T 00T o aqq 1A 1Al IRal 1A
<[ £G@).30).50) - 1o, 50,50 < %sﬁ A
< Kp | G0)30) = (), 40)| + K o) = 50| < Aty g, il T, 2t
= T Al | e
ldl .. ..
< Ky [+ v) || Az]| + dist, (2)] + Ky || 7= Ad = F(), () oM 51 + ép 2N
distance term (D) H ” H H S W(Sp + 6pHA7H - 5p W

acceleration term (A)



(riv 4+ 2M ) (2M + 1 At2)
m2(1 — At)

This last bound is expressed only in terms Af and
constantsi, M and M. Since it tends to zero a&¢ — 0,
there exists some duratioft; < dt, such that, for any
At < 6ts, (N) < 571?&“

3) Bounding the angular deviatiorsimple vector geom-
etry shows that

< |MAt+ At

dist, (x) + dist, (') -
[A4]
Sincel — cosf < sind for any § € [0,7/2], there exists
a durationdt, < dt3 such thatAt < 6ty = () < ‘”Igax
Combining our bounds on terms (A2), (A3), (N) anéi)(
we have showed so far that, wheéxt is small enough, the

N,

. . A <
sin (Ag, AY) < — At T 2m

system trajectories in the state space. Along the way, our
analysis also provided some insights into the design of such
interpolation functions.

The proof strategy that we useick., the inclusion of the
solution trajectory into a “tube” of non-zero volume, is not
new. It is related to the “attraction sequence” hypothekize
in [2], and can be traced back to seminal papers such as [7].
However, to the best of our knowledge, our work is the first
theoretical analysis to establish the existence and etadlic
construct such a bounding tube. This construction is araextr
link with reality: for a given system, one can actually check
for full actuation, compacity of the control set and Lips-
chitz continuity of the dynamics function. Similarly, when
designing her interpolation function, one can easily check
for properties such as local boundedness and acceleration

acceleration term is upper bounded %&Tmax.
4) Bounding the distance term (Dthe remaining term
is proportional to

(n +v) || Az|| + dist, (z)

[

[2]

< (26p + |AY[)(n +v) +dp

K, (n+v) + 3mAt
2

Hence, there exist a final < §t, such that, when\t < §t,
this last bound becomes % as well. Combining all our
bounds, we have established the existence of a duration
such thatAt < 6t = |u(7)| < Tmax-

5) Link with completenesdet us summarize our reason-
ing so far. We have iteratively constructed a duratorand
a radiusdp, independent front or ¢/, such that, as soon as
[t' —t| < ot, dist,(z) < dp and dist(z') < dp, the system
can track the trajectory INTERPOLATE, =’).

The proof of completeness of the whole randomized
planner follows directly from this construction. Let us dén
by B: := B((~,%)(t),dp), the ball of radiusip centered on
(v,%)(t) € X. Suppose that the roadmap contains a stat?]
x € By, and lett’ := min(T', ¢t + dt). If the planner samples
a statez’ € By, the interpolation between andz’ will be  [10]
successful and’ will be added to the roadmap. Since the
volume of B, is non-zero for the Lebesgue metric, the even
{SAMPLE(Xee) € By} will happen with probability one
as the number of extensions goes to infinity.

At the initialization of the planner, the roadmap is reducegl 5,
to zinit = (7(0),+(0)). Therefore, using the property above,
by induction on the number of time steps, the last state
(v(T),4(T")) will be eventually added to the roadmap withy3
probability one, which establishes the probabilistic ctetes
ness of the randomized planngt.

< At (3]

(4

(5]
(6]

(7]

(8]

IV. CONCLUSION
[14]

The goal of the present paper was to clarify the panorama
of completeness results in randomized kinodynamic plaf]
ning. We noted that existing proofs usually rely on assump-
tions too strong to be verified on practical systems. Wgs6]
proposed a classification of the various types of kinodyieami
constraints and planning methods used in the field, ar[gn
went on to prove probabilistic completeness for an impdartan
class of planners, namely those which steer by interpglatin

compliance.
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