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1 Proof of the Lemmas
Our first lemma upper-bounds the difference between the variation rate and derivative
of a Lipschitz function.

Lemma 1. Let g : [0, T ] → Rk denote a smooth Lipschitz function. Then, for any
(t, t′) ∈ [0, T ]2, ∥∥∥∥ġ(t)− g(t′)− g(t)

|t′ − t|

∥∥∥∥ ≤ Kg

2
|t′ − t|.

Proof. Let t′ > t. Then,∥∥∥∥ġ(t)− g(t′)− g(t)
t′ − t

∥∥∥∥ ≤ 1

t′ − t

∥∥∥∥∥
∫ t′

t

(ġ(t)− ġ(w)) dw

∥∥∥∥∥
≤ 1

t′ − t

∫ t′

t

‖ġ(t)− ġ(w)‖ dw

≤ Kg

t′ − t

∫ t′

t

|t− w|dw

≤ Kg

2
(t′ − t).

Lemma 2. If there exists a trajectory γ with δ-clearance in control space, then there ex-
ists δ′ < δ and a trajectory γ′ with δ′-clearance in control space such that inft ‖γ̈′(t)‖ >
0.
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Sketch of proof. If there is a time interval [t, t′] on which γ̈ ≡ 0, one can leverage full
actuation and δ-clearance in control to increment each coordinate with a small wave
function δγ̈i of amplitude δq̈i and zero integral over [t, t′]. The amplitude δq̈i is chosen
so as to guarantee δ′-clearance in control space, for some δ′ < δ.1

We can therefore assume that w.l.o.g. that the roots of γ̈ form a discrete set. Let t0
be such a root. Again, δ-clearance in control and full actuation can be leveraged into
adding a small perturbation δγ̈i to each coordinate around t0. To ensure that γ̈(t0) be-
comes non-zero without creating new roots at other time instants, one needs to ensure
that the coordinate perturbations are not time-correlated, which is easy to do, for in-
stance using sine waves with different different periods. Special care needs to be taken
if the root is at the first (or last) time instants of the trajectory. However, since we do
not require accelerations (nor controls) to be continuous, one can simply shift the wave
so as to start with (resp. end on) a non-zero value.

Lemma 3. If there exists a trajectory γ with δ-clearance in control space, then there ex-
ists δ′ < δ and a trajectory γ′ with δ′-clearance in control space such that inft ‖γ̇′(t)‖ >
0.

Sketch of proof. The argument is the same as in the proof for Lemma 2: add a small
perturbation wave of controlled amplitude to the velocity coordinates. However, the
system is controlled in acceleration and not velocity. To overcome this, one can use
sine waves as a basis family for the perturbations: their derivatives are cosine waves
of controlled amplitude, which can be added to the acceleration coordinates using full
actuation and reducing the δ-clearance in control. Boundary values for these perturba-
tions will be non-zero, which is not a problem since we do not require acceleration nor
control to be continuous.

1In the presence of C-space obstacles or velocity limits, one can refine this wave as δγ̈i(w) =

δq̈i sin
(

kw
t′−t

)
, where the period t′−t

k
is chosen so as to bound the deviation in velocity and position

incurred by the perturbation.
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