Next iterations of quadratic programming for adaptive and robust motion control

Talk given at the Humanoids 2023 workshop on Generalizable and Robust Decision Making, Planning, and Control for Humanoid Loco-Manipulation, 12 December 2023.

Abstract

Convex quadratic programming (QP) has become a major item in the robotics toolbox, with well-known applications including whole-body control, model predictive control (MPC), contact planning and state estimation. Current challenges when solving QP-formulated problems include feasibility (ensuring that a solution exists, e.g. when some problem parameters come from measurements), recursive feasibility (in MPC: ensuring the system does not steer towards unfeasible problems) and real-time performance. In this talk, we review new features brought by an upcoming generation of QP solvers. We will focus in particular on ProxQP, which can handle non-convex or unfeasible problems and always returns a principled solution. We will further develop how this enables the inclusion of differentiable QP layers in end-to-end trainable control pipelines.

Discussion

Feel free to post a comment by e-mail using the form below. Your e-mail address will not be disclosed.

📝 You can use Markdown with $\LaTeX$ formulas in your comment.

By clicking the button below, you agree to the publication of your comment on this page.

Opens your e-mail client.