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MOTIVATION



Quadratic programming for stair climbing

LIPM walking controller' = revisit Kajita et al. with QPs:
- QP1: linear model predictive control (ups [Kaj+03])
- QP2: wrench distribution (ups [Kaj+10])
- QP3: inverse kinematics (ups [Kaj+10])

Two consequences:
- Explicit cost functions

- Behavior switches on constraint saturation

Figure 1: Stair climbing at Airbus

'Stéphane Caron, Abderrahmane Kheddar, and Olivier Tempier. “Stair Climbing Stabilization of the HRP-4 Humanoid Robot
using Whole-body Admittance Control”. In: IEEE International Conference on Robotics and Automation. May 2019.
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LIPM walking controller pipeline
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Quadratic programming for quadrupedal MPC

Mo, Spain, October 15,2018

Dynamic Locomotion in the MIT Cheetah 3 Through Convex Model-Predictive Control
Jared Di Carlo', Patick M. Wensing?, Benjamin Katz', Gerardo Bl and Sanghue Kim'*
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%Jared Di Carlo, Patrick M Wensing, Benjamin Katz, Gerardo Bledt, and Sangbae Kim. “Dynamic locomotion in the mit cheetah 3
through convex model-predictive control”. In: IEEE/RS) international conference on intelligent robots and systems. 2018.
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WHY BOTHER WITH QP?



Why bother with quadratic programming?

Cons:

- These works are oldies!
- Whole-body model predictive control has become feasible [Dan+22; KO22; Gra+23]

- RL-trained policies can achieve better robustness [Lee+20; Kum+21]
Pros:

- Quadratic programming is improving: performance, differentiability, ...
- SQP with “one Newton step per cycle” = QP

- Quadratic programming not necessarily L to nonlinear OC and RL
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Three areas of improvement

1. Runtime and accuracy
2. Handling infeasibility
3. Differentiability
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RUNTIME AND ACCURACY




Quadratic programming

A quadratic program can be generally written as:

minimize  Ix"Px+ q'x
X
subjectto Gx<h
Ax=Db

[b<x<ub
For example in Python:

from gpsolvers import solve_gp

M = np.array([[1., 2., 0.], [-8., 3., 2.1, [0., 1., 1.]])
P=MTa@aM # this is a positive definite matrix

q = np.array([3., 2., 3.]) a M

G = np.array([[1., 2., 1.1, [2., 0., 1.], [-1., 2., -1.]])
h = np.array([3., 2., -2.])

x = solve_gp(P, q, G, h, solver="proxqp")

Setup: pip install gpsolvers[open_source_solvers]
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Open source QP solvers

Solver name  Algorithm Warm-start  Year
CVXOPT Interior point = 2013
ECOS Interior point = 2013
qpOASES Active set yes 2014
quadprog Active set = 2015
SCS Augmented Lagrangian yes 2016
HPIPM Interior point yes 2017
HIGHS Active set = 2017
0SQpP Augmented Lagrangian  yes 2017
DAQP Active set = 2021
qpSWIFT Interior point = 2021
Clarabel Interior point = 2022
QPALM Augmented Lagrangian  yes 2022
ProxQP Augmented Lagrangian  yes 2022
PIQP Proximal interior point - 2023
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Benchmark for quadratic programming (QP) solvers available in Python.

The objective is to compare and select the best QP solvers for given use cases.
‘The benchmarking methodology is open to discussions. Standard and
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Test sets

test sets to represent

comes with standard
different use cases for QP solvers:

Test set Problems Brief description

Maros-Meszaros 138 Standard, designed to be difficult.

Maros-Meszaros ‘Subset of Maros-Meszaros restricted to

62
dense smaller dense problems.
Github free-for- Community-buitt, new problems are
all welcome!

New test sets are welcome! The benchmark is designed so that each test set
comes in a standalone directory. Check out the existing test sets below, and feel
free to create a new one that better matches your particular use cases.

Solvers
Solver Keyword Algorithm Matrices License
Clarabel clarabel Interior point Sparse Apache-2.0
CVXOPT  cveopt  Interiorpoint  Dense GPL30
DAQP dagp Active set Dense MIT
ECOS ecos Interior point Sparse GPL3.0
Gurobi gurobi. Interior point Sparse Commercial
HIGHS nighs Active set Sparse M7
BSD-2-
HPIPM hpipm Interior point Dense Clause
MOSEK mosek Interior point Sparse Commercial
NPPro nppro Active set Dense Commercial

GitHub: https://github.com/qpsolvers/qpbenchmark
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https://github.com/qpsolvers/qpbenchmark

How to compare solvers?

How can we compare solver performances over whole test sets?

©
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Summary of existing expert knowledge

L. Performance
profiles

Shifted
geometric
means

3Hans Mittelmann. Benchmarks for optimization software. Sept. 8, 2019. URL: http://plato.asu.edu/bench.html.
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Shifted geometric means

The shifted geometric mean of a series T° = (Tj)iL, is:

shgeom(T°) = n/H(Tf +R)—R

Scaled shifted geometric mean: T = T°/ arg mins T°.

Interpretation
A solver with a scaled shgeom(runtimes) =Y is Yx slower than the best solver.

“Hans Mittelmann. Benchmarks for optimization software. Sept. 8, 2019. URL: http://plato.asu.edu/bench.html.
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Don’t trust performance profiles
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Figure 2: Time performance profiles for a real test case. Left: three solvers. Right: two solvers.

°Nicholas Gould and Jennifer Scott. “A note on performance profiles for benchmarking software”. In: ACM Transactions on

Mathematical Software 43.2 (2016).
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Optimality conditions

Let x*, y*, z* denote a primal-dual solution to our QP:

- Primal residual: r, := max(||Ax* — b||~, [GX" — h]4)
- Dual residual: ry := ||Px* + g + ATy* 4+ G'7"|| o
- Duality gap: rg := |x*TPx* + g'x* + b'y* 4+ h'z*|

Optimality
The solution (x*,y*,z*) returned by a QP solver is optimal if and only if r, = 0,r4g = 0,rg = 0.
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Accuracy of a solution

Accuracy of a solution with absolute eqs and relative e, tolerances:

rp < €abs 4 €rel Max([|AX™ || oo, [|GX [ oos [|b]l oo, I[N lo0)

ra < €abs + €ret Max([|PX*[loo, 1G]l o0, ATV |00 [|G'Z"[|oo)

rg < €avs + €ret max(xTPx"|, |g"x*, [bTy"], |h"Z*])
Contract from the QP solver®

Default solver accuracies vary a lot: solvers trade off runtime and accuracy.

50SQP does not check the duality gap and may return false solutions, such as [0Do21, Section 7.2].
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Check results for the test sets that interest you:

- Model predictive control: humanoid, quadruped, wheeled biped, ...
https://github.com/qpsolvers/mpc_qgpbenchmark

- Maros-Meszaros: standard, 138 difficult problems.
https://github.com/qpsolvers/maros_meszaros_qpbenchmark

- Free-for-all: open to all problems, no restriction.
https://github.com/qpsolvers/free_for_all_qgpbenchmark

Propose your own

The benchmark is a gpbenchmark command-line tool: try your own use cases!

Setup: pip install gpbenchmark
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Open questions

Goal of the benchmark:

- What are the best solvers for task € { MPC, IK, ID, ... }?
- What is the ideal runtime/accuracy tradeoff for each task?

- What runtime/accuracy tradeoff can each solver achieve?

Current limitations:

- Cold-start only (#101)
- CPU thermal throttling (#88)
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HANDLING INFEASIBILITY




Open and closed-loop MPC

Recursive feasibility
Guarantee that the optimization problem at the

Initial state
MPC Y

output
MPC |—> Integrator }7—>

Integrated state

Figure 3: Open-loop MPC: strong RF doable [CWF17].

next cycle is feasible.

MPC

output
MPC I—){ Robot

State observer

Real
robot state

Measured
robot state

Figure 4: Closed-loop MPC: no recursive feasibility?
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ProxQP

PROXQP: an Efficient and Versatile Quadratic
Programming Solver for Real-Time Robotics

- Handles semidefinite P (including P = 0) Applications and Beyond
- Warm- and hot-starting for e.g. MPC
- Competitive runtime and accuracy perfs

- (Theoretical: global convergence guarantee.)

Property
ProxQP converges to the solution of:

- The QP itself, if it is feasible, or

- The closest feasible QP otherwise.

Never fails: great for real-time control.

’Antoine Bambade, Fabian Schramm, Sarah El Kazdadi, Stéphane Caron, Adrien Taylor, and Justin Carpentier. “PROXQP: an
Efficient and Versatile Quadratic Programming Solver for Real-Time Robotics Applications and Beyond”. working paper or
preprint. Sept. 2023. URL: https://inria.hal.science/hal-04198663.
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ProxQP on MPC problems

Linearize model predictive control as a QP:

T—1
min - wr||zr — Tgoalllz + D wallwe — Tgoull3 + waluellz,
R =0

s.t. Try1 = Axe + But, o = Tinits
Cxi + Dus < ey,

- Dimensions: n = 50, m = 100

QP solve times on the embedded system

- Time: T = 50 steps, dt = 20 ms F12
5 3 H v
- CPU: Raspberry Pi 4 (1.8 GHz) single-core g11
. ; 5 1.0
- Hot-starting: 0.8 + 0.02 ms g
]
o9
£
c 0.8
TABLE V: Humanoid locomotion MPC problems with perturbations. ©
Noise Level | PROXQP QUADPROG 0sQP QPOASES scs QPSWIFT ~ MOSEK Y 10 20 30 40 50
100 [ 119+97% 10£02%  19309%  10£02%  10£02%  0£00% 100.2% 0.15
50 | S83B:364%  LIE03%  201EL1%  LIL03%  LI04%  0£00% LI403%  —
10| 100400% 14308%  35:24%  14:08%  LSELI%  0£00% 14309% 2 0.10
05 | 100£00% 185120  55538%  19%15%  20%16%  0£00% 18+12% =
0.1 | 100£00% 33426%  5164367%  43£38%  49443%  0£00% 33426% @ 005
0.05 | 100£00% 35432%  976:135%  50469%  17465%  0£00% 35432 2@
001 | 100£00% 44544%  100H0.0%  TTEOS%  (024378%  0£00%  44H45%  © (oo
103 | 100£00% 50£52%  100£0.0%  114£125%  100£00%  0£00% soxs2e g O
1074 | 100£00% 504520 100£0.0%  ISSEI68%  100£00%  0£00% 50520 &
1075 | 100+00% 50£529%  100£0.0%  830+365%  99.189%  0£00% siks3e - —0.05
107 | 100£00% 50£52%  100£0.0%  100£0.0%  O7H148%  0£00%  448+342%
1070 | 100£00% 50£52%  100£00%  100500%  100£00%  0£00%  10040.0% ! v v
0.0 100:£0.0% 100£0.0%  100£0.0%  10020.0%  100:0.0% 000% 100-0.0% o 10 20 30 40 50

Time [s]
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ProxSuite

Comparing runtime on Maros-Meszaros dense subset with high_accuracy settings

[}
PI’OXSU Ite N
— highs
50 4 == gurobi
THE ADVANCED PROXIMAL OPTIMIZATION TOOLBOX Bl cvxopt
E = proxqp
: . 520 Gladoro —
- Fast: C++ with custom linear Cholesky solver 2 ey ’
* 20
- Backends: dense, sparse, matrix-free optim.
10
- Easy-to-use: standard API, Python/Julia ,
- Open-source: BSD-license, Conda/PyPI T e

Setup: conda install -c conda-forge proxsuite | pip install proxsuite
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V THROUGH INFEASIBLE PROBLEMS




Use convex QP as a deep learning layer: 8

QPLayer
g o T
Input Y =areminTy Output
—
x st AB)Ty=e =

y>0 Y

Trained: A(6)

Figure 5: Learning to play Sudoku: the layer is trainable if and only if we can V through infeasible LPs.

8Brandon Amos and ] Zico Kolter. “Optnet: Differentiable optimization as a layer in neural networks”. In: International
Conference on Machine Learning. PMLR. 2017, pp. 136-145.
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Example of differentiable pipeline

Example: making an LP feasible

Solve the closest feasible QP, and penalize in the learning loss its current distance
w.r.t. the space of feasible QPs.

QP Iayer Forward pass
. . i L.
. min —input” x 25 e
input ——> zekn P o N R
L)) P a— 2
Az = ].7 da* Os*
s.t.
z2>0. Backward pass

Remark this distance can be measured with some vector s* defined later.
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Robotics example

Sensors (Images/Motion Capture)

,,,,,,,, KHz

! !
I I !
I I !
(Gdes; Udes, Odes, i T l
: — Inverse Dynamics —— —
A !
i : ‘ !
: Robot :

1
| |
! q, v |

Figure 6: Differentiable pipeline training a QP-based motion policy with visual inputs.®

°Avadesh Meduri, Huaijiang Zhu, Armand Jordana, and Ludovic Righetti. “MPC with Sensor-Based Online Cost Adaptation”. In:
2023 IEEE International Conference on Robotics and Automation (ICRA). IEEE. 2023, pp. 996-1002.
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QPLayer methodology

Forward pass: solving the closest feasible QP - formulated hierarchically

s*(6) = arg min 3sll3

s.t. 2%(0), 2% (¢) € arg min max L(x, z, s;0), (QP-H(©)
z€R™ ZeR"?

e automatic: make use of a property of augmented Lagrangians via ProxQP

e we get the infeasibility gap s*(#) (= 0 if feasible)

°Antoine Bambade, Fabian Schramm, Adrien Taylor, and Justin Carpentier. “QPLayer: efficient differentiation of convex
quadratic optimization”. working paper or preprint. June 2023. URL: https://inria.hal.science/hal-04133055.
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|
Comparing runtime on Maros-Meszaros dense subset with high_accuracy settings
roxaulte =2
— gpSWift ]
= highs
THE ADVANCED PROXIMAL OPTIMIZATION TOOLBOX 50 1= aurokd |
o) — CVXOPE
£ 40 { s
. . 2 = proxqp
- Fast: C++ with custom linear Cholesky solver B | woes —
8 f
- Backends: dense, sparse, matrix-free optim. *2
- Easy-to-use: standard API, Python/Julia 2
. o
- Open-source: BSD-license, Conda/PyPI

runtime

- QPLayer: included, freshly baked!

Setup: conda install -c conda-forge proxsuite | pip install proxsuite
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CONCLUSION




Conclusion

- QP in control pipelines: model predictive control, inverse dynamics, ...
- QP benchmark: evaluate runtimes and accuracy, open to new problems
- ProxQP: handle infeasibility, real-time control

- QPLayer: V through QP layers, everywhere
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That's all folks!
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