Friction cones

Friction cone

Consider the 2D example depicted in figure to the right. A 2D mass is in contact with a single surface. This contact will remain fixed as long as the contact force fc=mgfext\def\LdG{\dot{L}_G} \def\Ld{\dot{L}} \def\bfA{\boldsymbol{A}} \def\bfB{\boldsymbol{B}} \def\bfC{\boldsymbol{C}} \def\bfD{\boldsymbol{D}} \def\bfE{\boldsymbol{E}} \def\bfF{\boldsymbol{F}} \def\bfG{\boldsymbol{G}} \def\bfH{\boldsymbol{H}} \def\bfI{\boldsymbol{I}} \def\bfJ{\boldsymbol{J}} \def\bfK{\boldsymbol{K}} \def\bfL{\boldsymbol{L}} \def\bfM{\boldsymbol{M}} \def\bfN{\boldsymbol{N}} \def\bfO{\boldsymbol{O}} \def\bfP{\boldsymbol{P}} \def\bfQ{\boldsymbol{Q}} \def\bfR{\boldsymbol{R}} \def\bfS{\boldsymbol{S}} \def\bfT{\boldsymbol{T}} \def\bfU{\boldsymbol{U}} \def\bfV{\boldsymbol{V}} \def\bfW{\boldsymbol{W}} \def\bfX{\boldsymbol{X}} \def\bfY{\boldsymbol{Y}} \def\bfZ{\boldsymbol{Z}} \def\bfalpha{\boldsymbol{\alpha}} \def\bfa{\boldsymbol{a}} \def\bfbeta{\boldsymbol{\beta}} \def\bfb{\boldsymbol{b}} \def\bfcd{\dot{\bfc}} \def\bfchi{\boldsymbol{\chi}} \def\bfc{\boldsymbol{c}} \def\bfd{\boldsymbol{d}} \def\bfe{\boldsymbol{e}} \def\bff{\boldsymbol{f}} \def\bfgamma{\boldsymbol{\gamma}} \def\bfg{\boldsymbol{g}} \def\bfh{\boldsymbol{h}} \def\bfi{\boldsymbol{i}} \def\bfj{\boldsymbol{j}} \def\bfk{\boldsymbol{k}} \def\bflambda{\boldsymbol{\lambda}} \def\bfl{\boldsymbol{l}} \def\bfm{\boldsymbol{m}} \def\bfn{\boldsymbol{n}} \def\bfomega{\boldsymbol{\omega}} \def\bfone{\boldsymbol{1}} \def\bfo{\boldsymbol{o}} \def\bfpdd{\ddot{\bfp}} \def\bfpd{\dot{\bfp}} \def\bfphi{\boldsymbol{\phi}} \def\bfp{\boldsymbol{p}} \def\bfq{\boldsymbol{q}} \def\bfr{\boldsymbol{r}} \def\bfsigma{\boldsymbol{\sigma}} \def\bfs{\boldsymbol{s}} \def\bftau{\boldsymbol{\tau}} \def\bft{\boldsymbol{t}} \def\bfu{\boldsymbol{u}} \def\bfv{\boldsymbol{v}} \def\bfw{\boldsymbol{w}} \def\bfxi{\boldsymbol{\xi}} \def\bfx{\boldsymbol{x}} \def\bfy{\boldsymbol{y}} \def\bfzero{\boldsymbol{0}} \def\bfz{\boldsymbol{z}} \def\calA{\mathcal{A}} \def\calB{\mathcal{B}} \def\calC{\mathcal{C}} \def\calD{\mathcal{D}} \def\calE{\mathcal{E}} \def\calF{\mathcal{F}} \def\calG{\mathcal{G}} \def\calH{\mathcal{H}} \def\calI{\mathcal{I}} \def\calJ{\mathcal{J}} \def\calK{\mathcal{K}} \def\calL{\mathcal{L}} \def\calM{\mathcal{M}} \def\calN{\mathcal{N}} \def\calO{\mathcal{O}} \def\calP{\mathcal{P}} \def\calQ{\mathcal{Q}} \def\calR{\mathcal{R}} \def\calS{\mathcal{S}} \def\calT{\mathcal{T}} \def\calU{\mathcal{U}} \def\calV{\mathcal{V}} \def\calW{\mathcal{W}} \def\calX{\mathcal{X}} \def\calY{\mathcal{Y}} \def\calZ{\mathcal{Z}} \def\d#1{{\rm d}{#1}} \def\defeq{\stackrel{\mathrm{def}}{=}} \def\dim{\rm dim} \def\p{\boldsymbol{p}} \def\qdd{\ddot{\bfq}} \def\qd{\dot{\bfq}} \def\q{\boldsymbol{q}} \def\xdd{\ddot{x}} \def\xd{\dot{x}} \def\ydd{\ddot{y}} \def\yd{\dot{y}} \def\zdd{\ddot{z}} \def\zd{\dot{z}} \bff^c = m \bfg - \bff^{\mathit{ext}} lies within the Coulomb friction cone C\def\LdG{\dot{L}_G} \def\Ld{\dot{L}} \def\bfA{\boldsymbol{A}} \def\bfB{\boldsymbol{B}} \def\bfC{\boldsymbol{C}} \def\bfD{\boldsymbol{D}} \def\bfE{\boldsymbol{E}} \def\bfF{\boldsymbol{F}} \def\bfG{\boldsymbol{G}} \def\bfH{\boldsymbol{H}} \def\bfI{\boldsymbol{I}} \def\bfJ{\boldsymbol{J}} \def\bfK{\boldsymbol{K}} \def\bfL{\boldsymbol{L}} \def\bfM{\boldsymbol{M}} \def\bfN{\boldsymbol{N}} \def\bfO{\boldsymbol{O}} \def\bfP{\boldsymbol{P}} \def\bfQ{\boldsymbol{Q}} \def\bfR{\boldsymbol{R}} \def\bfS{\boldsymbol{S}} \def\bfT{\boldsymbol{T}} \def\bfU{\boldsymbol{U}} \def\bfV{\boldsymbol{V}} \def\bfW{\boldsymbol{W}} \def\bfX{\boldsymbol{X}} \def\bfY{\boldsymbol{Y}} \def\bfZ{\boldsymbol{Z}} \def\bfalpha{\boldsymbol{\alpha}} \def\bfa{\boldsymbol{a}} \def\bfbeta{\boldsymbol{\beta}} \def\bfb{\boldsymbol{b}} \def\bfcd{\dot{\bfc}} \def\bfchi{\boldsymbol{\chi}} \def\bfc{\boldsymbol{c}} \def\bfd{\boldsymbol{d}} \def\bfe{\boldsymbol{e}} \def\bff{\boldsymbol{f}} \def\bfgamma{\boldsymbol{\gamma}} \def\bfg{\boldsymbol{g}} \def\bfh{\boldsymbol{h}} \def\bfi{\boldsymbol{i}} \def\bfj{\boldsymbol{j}} \def\bfk{\boldsymbol{k}} \def\bflambda{\boldsymbol{\lambda}} \def\bfl{\boldsymbol{l}} \def\bfm{\boldsymbol{m}} \def\bfn{\boldsymbol{n}} \def\bfomega{\boldsymbol{\omega}} \def\bfone{\boldsymbol{1}} \def\bfo{\boldsymbol{o}} \def\bfpdd{\ddot{\bfp}} \def\bfpd{\dot{\bfp}} \def\bfphi{\boldsymbol{\phi}} \def\bfp{\boldsymbol{p}} \def\bfq{\boldsymbol{q}} \def\bfr{\boldsymbol{r}} \def\bfsigma{\boldsymbol{\sigma}} \def\bfs{\boldsymbol{s}} \def\bftau{\boldsymbol{\tau}} \def\bft{\boldsymbol{t}} \def\bfu{\boldsymbol{u}} \def\bfv{\boldsymbol{v}} \def\bfw{\boldsymbol{w}} \def\bfxi{\boldsymbol{\xi}} \def\bfx{\boldsymbol{x}} \def\bfy{\boldsymbol{y}} \def\bfzero{\boldsymbol{0}} \def\bfz{\boldsymbol{z}} \def\calA{\mathcal{A}} \def\calB{\mathcal{B}} \def\calC{\mathcal{C}} \def\calD{\mathcal{D}} \def\calE{\mathcal{E}} \def\calF{\mathcal{F}} \def\calG{\mathcal{G}} \def\calH{\mathcal{H}} \def\calI{\mathcal{I}} \def\calJ{\mathcal{J}} \def\calK{\mathcal{K}} \def\calL{\mathcal{L}} \def\calM{\mathcal{M}} \def\calN{\mathcal{N}} \def\calO{\mathcal{O}} \def\calP{\mathcal{P}} \def\calQ{\mathcal{Q}} \def\calR{\mathcal{R}} \def\calS{\mathcal{S}} \def\calT{\mathcal{T}} \def\calU{\mathcal{U}} \def\calV{\mathcal{V}} \def\calW{\mathcal{W}} \def\calX{\mathcal{X}} \def\calY{\mathcal{Y}} \def\calZ{\mathcal{Z}} \def\d#1{{\rm d}{#1}} \def\defeq{\stackrel{\mathrm{def}}{=}} \def\dim{\rm dim} \def\p{\boldsymbol{p}} \def\qdd{\ddot{\bfq}} \def\qd{\dot{\bfq}} \def\q{\boldsymbol{q}} \def\xdd{\ddot{x}} \def\xd{\dot{x}} \def\ydd{\ddot{y}} \def\yd{\dot{y}} \def\zdd{\ddot{z}} \def\zd{\dot{z}} \calC. As soon as fc\def\LdG{\dot{L}_G} \def\Ld{\dot{L}} \def\bfA{\boldsymbol{A}} \def\bfB{\boldsymbol{B}} \def\bfC{\boldsymbol{C}} \def\bfD{\boldsymbol{D}} \def\bfE{\boldsymbol{E}} \def\bfF{\boldsymbol{F}} \def\bfG{\boldsymbol{G}} \def\bfH{\boldsymbol{H}} \def\bfI{\boldsymbol{I}} \def\bfJ{\boldsymbol{J}} \def\bfK{\boldsymbol{K}} \def\bfL{\boldsymbol{L}} \def\bfM{\boldsymbol{M}} \def\bfN{\boldsymbol{N}} \def\bfO{\boldsymbol{O}} \def\bfP{\boldsymbol{P}} \def\bfQ{\boldsymbol{Q}} \def\bfR{\boldsymbol{R}} \def\bfS{\boldsymbol{S}} \def\bfT{\boldsymbol{T}} \def\bfU{\boldsymbol{U}} \def\bfV{\boldsymbol{V}} \def\bfW{\boldsymbol{W}} \def\bfX{\boldsymbol{X}} \def\bfY{\boldsymbol{Y}} \def\bfZ{\boldsymbol{Z}} \def\bfalpha{\boldsymbol{\alpha}} \def\bfa{\boldsymbol{a}} \def\bfbeta{\boldsymbol{\beta}} \def\bfb{\boldsymbol{b}} \def\bfcd{\dot{\bfc}} \def\bfchi{\boldsymbol{\chi}} \def\bfc{\boldsymbol{c}} \def\bfd{\boldsymbol{d}} \def\bfe{\boldsymbol{e}} \def\bff{\boldsymbol{f}} \def\bfgamma{\boldsymbol{\gamma}} \def\bfg{\boldsymbol{g}} \def\bfh{\boldsymbol{h}} \def\bfi{\boldsymbol{i}} \def\bfj{\boldsymbol{j}} \def\bfk{\boldsymbol{k}} \def\bflambda{\boldsymbol{\lambda}} \def\bfl{\boldsymbol{l}} \def\bfm{\boldsymbol{m}} \def\bfn{\boldsymbol{n}} \def\bfomega{\boldsymbol{\omega}} \def\bfone{\boldsymbol{1}} \def\bfo{\boldsymbol{o}} \def\bfpdd{\ddot{\bfp}} \def\bfpd{\dot{\bfp}} \def\bfphi{\boldsymbol{\phi}} \def\bfp{\boldsymbol{p}} \def\bfq{\boldsymbol{q}} \def\bfr{\boldsymbol{r}} \def\bfsigma{\boldsymbol{\sigma}} \def\bfs{\boldsymbol{s}} \def\bftau{\boldsymbol{\tau}} \def\bft{\boldsymbol{t}} \def\bfu{\boldsymbol{u}} \def\bfv{\boldsymbol{v}} \def\bfw{\boldsymbol{w}} \def\bfxi{\boldsymbol{\xi}} \def\bfx{\boldsymbol{x}} \def\bfy{\boldsymbol{y}} \def\bfzero{\boldsymbol{0}} \def\bfz{\boldsymbol{z}} \def\calA{\mathcal{A}} \def\calB{\mathcal{B}} \def\calC{\mathcal{C}} \def\calD{\mathcal{D}} \def\calE{\mathcal{E}} \def\calF{\mathcal{F}} \def\calG{\mathcal{G}} \def\calH{\mathcal{H}} \def\calI{\mathcal{I}} \def\calJ{\mathcal{J}} \def\calK{\mathcal{K}} \def\calL{\mathcal{L}} \def\calM{\mathcal{M}} \def\calN{\mathcal{N}} \def\calO{\mathcal{O}} \def\calP{\mathcal{P}} \def\calQ{\mathcal{Q}} \def\calR{\mathcal{R}} \def\calS{\mathcal{S}} \def\calT{\mathcal{T}} \def\calU{\mathcal{U}} \def\calV{\mathcal{V}} \def\calW{\mathcal{W}} \def\calX{\mathcal{X}} \def\calY{\mathcal{Y}} \def\calZ{\mathcal{Z}} \def\d#1{{\rm d}{#1}} \def\defeq{\stackrel{\mathrm{def}}{=}} \def\dim{\rm dim} \def\p{\boldsymbol{p}} \def\qdd{\ddot{\bfq}} \def\qd{\dot{\bfq}} \def\q{\boldsymbol{q}} \def\xdd{\ddot{x}} \def\xd{\dot{x}} \def\ydd{\ddot{y}} \def\yd{\dot{y}} \def\zdd{\ddot{z}} \def\zd{\dot{z}} \bff^c exits C\def\LdG{\dot{L}_G} \def\Ld{\dot{L}} \def\bfA{\boldsymbol{A}} \def\bfB{\boldsymbol{B}} \def\bfC{\boldsymbol{C}} \def\bfD{\boldsymbol{D}} \def\bfE{\boldsymbol{E}} \def\bfF{\boldsymbol{F}} \def\bfG{\boldsymbol{G}} \def\bfH{\boldsymbol{H}} \def\bfI{\boldsymbol{I}} \def\bfJ{\boldsymbol{J}} \def\bfK{\boldsymbol{K}} \def\bfL{\boldsymbol{L}} \def\bfM{\boldsymbol{M}} \def\bfN{\boldsymbol{N}} \def\bfO{\boldsymbol{O}} \def\bfP{\boldsymbol{P}} \def\bfQ{\boldsymbol{Q}} \def\bfR{\boldsymbol{R}} \def\bfS{\boldsymbol{S}} \def\bfT{\boldsymbol{T}} \def\bfU{\boldsymbol{U}} \def\bfV{\boldsymbol{V}} \def\bfW{\boldsymbol{W}} \def\bfX{\boldsymbol{X}} \def\bfY{\boldsymbol{Y}} \def\bfZ{\boldsymbol{Z}} \def\bfalpha{\boldsymbol{\alpha}} \def\bfa{\boldsymbol{a}} \def\bfbeta{\boldsymbol{\beta}} \def\bfb{\boldsymbol{b}} \def\bfcd{\dot{\bfc}} \def\bfchi{\boldsymbol{\chi}} \def\bfc{\boldsymbol{c}} \def\bfd{\boldsymbol{d}} \def\bfe{\boldsymbol{e}} \def\bff{\boldsymbol{f}} \def\bfgamma{\boldsymbol{\gamma}} \def\bfg{\boldsymbol{g}} \def\bfh{\boldsymbol{h}} \def\bfi{\boldsymbol{i}} \def\bfj{\boldsymbol{j}} \def\bfk{\boldsymbol{k}} \def\bflambda{\boldsymbol{\lambda}} \def\bfl{\boldsymbol{l}} \def\bfm{\boldsymbol{m}} \def\bfn{\boldsymbol{n}} \def\bfomega{\boldsymbol{\omega}} \def\bfone{\boldsymbol{1}} \def\bfo{\boldsymbol{o}} \def\bfpdd{\ddot{\bfp}} \def\bfpd{\dot{\bfp}} \def\bfphi{\boldsymbol{\phi}} \def\bfp{\boldsymbol{p}} \def\bfq{\boldsymbol{q}} \def\bfr{\boldsymbol{r}} \def\bfsigma{\boldsymbol{\sigma}} \def\bfs{\boldsymbol{s}} \def\bftau{\boldsymbol{\tau}} \def\bft{\boldsymbol{t}} \def\bfu{\boldsymbol{u}} \def\bfv{\boldsymbol{v}} \def\bfw{\boldsymbol{w}} \def\bfxi{\boldsymbol{\xi}} \def\bfx{\boldsymbol{x}} \def\bfy{\boldsymbol{y}} \def\bfzero{\boldsymbol{0}} \def\bfz{\boldsymbol{z}} \def\calA{\mathcal{A}} \def\calB{\mathcal{B}} \def\calC{\mathcal{C}} \def\calD{\mathcal{D}} \def\calE{\mathcal{E}} \def\calF{\mathcal{F}} \def\calG{\mathcal{G}} \def\calH{\mathcal{H}} \def\calI{\mathcal{I}} \def\calJ{\mathcal{J}} \def\calK{\mathcal{K}} \def\calL{\mathcal{L}} \def\calM{\mathcal{M}} \def\calN{\mathcal{N}} \def\calO{\mathcal{O}} \def\calP{\mathcal{P}} \def\calQ{\mathcal{Q}} \def\calR{\mathcal{R}} \def\calS{\mathcal{S}} \def\calT{\mathcal{T}} \def\calU{\mathcal{U}} \def\calV{\mathcal{V}} \def\calW{\mathcal{W}} \def\calX{\mathcal{X}} \def\calY{\mathcal{Y}} \def\calZ{\mathcal{Z}} \def\d#1{{\rm d}{#1}} \def\defeq{\stackrel{\mathrm{def}}{=}} \def\dim{\rm dim} \def\p{\boldsymbol{p}} \def\qdd{\ddot{\bfq}} \def\qd{\dot{\bfq}} \def\q{\boldsymbol{q}} \def\xdd{\ddot{x}} \def\xd{\dot{x}} \def\ydd{\ddot{y}} \def\yd{\dot{y}} \def\zdd{\ddot{z}} \def\zd{\dot{z}} \calC, the contact switches to the sliding mode. The property fcC\def\LdG{\dot{L}_G} \def\Ld{\dot{L}} \def\bfA{\boldsymbol{A}} \def\bfB{\boldsymbol{B}} \def\bfC{\boldsymbol{C}} \def\bfD{\boldsymbol{D}} \def\bfE{\boldsymbol{E}} \def\bfF{\boldsymbol{F}} \def\bfG{\boldsymbol{G}} \def\bfH{\boldsymbol{H}} \def\bfI{\boldsymbol{I}} \def\bfJ{\boldsymbol{J}} \def\bfK{\boldsymbol{K}} \def\bfL{\boldsymbol{L}} \def\bfM{\boldsymbol{M}} \def\bfN{\boldsymbol{N}} \def\bfO{\boldsymbol{O}} \def\bfP{\boldsymbol{P}} \def\bfQ{\boldsymbol{Q}} \def\bfR{\boldsymbol{R}} \def\bfS{\boldsymbol{S}} \def\bfT{\boldsymbol{T}} \def\bfU{\boldsymbol{U}} \def\bfV{\boldsymbol{V}} \def\bfW{\boldsymbol{W}} \def\bfX{\boldsymbol{X}} \def\bfY{\boldsymbol{Y}} \def\bfZ{\boldsymbol{Z}} \def\bfalpha{\boldsymbol{\alpha}} \def\bfa{\boldsymbol{a}} \def\bfbeta{\boldsymbol{\beta}} \def\bfb{\boldsymbol{b}} \def\bfcd{\dot{\bfc}} \def\bfchi{\boldsymbol{\chi}} \def\bfc{\boldsymbol{c}} \def\bfd{\boldsymbol{d}} \def\bfe{\boldsymbol{e}} \def\bff{\boldsymbol{f}} \def\bfgamma{\boldsymbol{\gamma}} \def\bfg{\boldsymbol{g}} \def\bfh{\boldsymbol{h}} \def\bfi{\boldsymbol{i}} \def\bfj{\boldsymbol{j}} \def\bfk{\boldsymbol{k}} \def\bflambda{\boldsymbol{\lambda}} \def\bfl{\boldsymbol{l}} \def\bfm{\boldsymbol{m}} \def\bfn{\boldsymbol{n}} \def\bfomega{\boldsymbol{\omega}} \def\bfone{\boldsymbol{1}} \def\bfo{\boldsymbol{o}} \def\bfpdd{\ddot{\bfp}} \def\bfpd{\dot{\bfp}} \def\bfphi{\boldsymbol{\phi}} \def\bfp{\boldsymbol{p}} \def\bfq{\boldsymbol{q}} \def\bfr{\boldsymbol{r}} \def\bfsigma{\boldsymbol{\sigma}} \def\bfs{\boldsymbol{s}} \def\bftau{\boldsymbol{\tau}} \def\bft{\boldsymbol{t}} \def\bfu{\boldsymbol{u}} \def\bfv{\boldsymbol{v}} \def\bfw{\boldsymbol{w}} \def\bfxi{\boldsymbol{\xi}} \def\bfx{\boldsymbol{x}} \def\bfy{\boldsymbol{y}} \def\bfzero{\boldsymbol{0}} \def\bfz{\boldsymbol{z}} \def\calA{\mathcal{A}} \def\calB{\mathcal{B}} \def\calC{\mathcal{C}} \def\calD{\mathcal{D}} \def\calE{\mathcal{E}} \def\calF{\mathcal{F}} \def\calG{\mathcal{G}} \def\calH{\mathcal{H}} \def\calI{\mathcal{I}} \def\calJ{\mathcal{J}} \def\calK{\mathcal{K}} \def\calL{\mathcal{L}} \def\calM{\mathcal{M}} \def\calN{\mathcal{N}} \def\calO{\mathcal{O}} \def\calP{\mathcal{P}} \def\calQ{\mathcal{Q}} \def\calR{\mathcal{R}} \def\calS{\mathcal{S}} \def\calT{\mathcal{T}} \def\calU{\mathcal{U}} \def\calV{\mathcal{V}} \def\calW{\mathcal{W}} \def\calX{\mathcal{X}} \def\calY{\mathcal{Y}} \def\calZ{\mathcal{Z}} \def\d#1{{\rm d}{#1}} \def\defeq{\stackrel{\mathrm{def}}{=}} \def\dim{\rm dim} \def\p{\boldsymbol{p}} \def\qdd{\ddot{\bfq}} \def\qd{\dot{\bfq}} \def\q{\boldsymbol{q}} \def\xdd{\ddot{x}} \def\xd{\dot{x}} \def\ydd{\ddot{y}} \def\yd{\dot{y}} \def\zdd{\ddot{z}} \def\zd{\dot{z}} \bff^c \in \calC is called the contact-stability condition for this contact mode: as long as it is fulfilled, the contact remains fixed. Deriving contact-stability conditions for multibody systems (such as ZMP support areas) is of key interest as robots are commonly controlled using only a small number of contact modes.

Coulomb friction

Consider the set of points {Ci}\def\LdG{\dot{L}_G} \def\Ld{\dot{L}} \def\bfA{\boldsymbol{A}} \def\bfB{\boldsymbol{B}} \def\bfC{\boldsymbol{C}} \def\bfD{\boldsymbol{D}} \def\bfE{\boldsymbol{E}} \def\bfF{\boldsymbol{F}} \def\bfG{\boldsymbol{G}} \def\bfH{\boldsymbol{H}} \def\bfI{\boldsymbol{I}} \def\bfJ{\boldsymbol{J}} \def\bfK{\boldsymbol{K}} \def\bfL{\boldsymbol{L}} \def\bfM{\boldsymbol{M}} \def\bfN{\boldsymbol{N}} \def\bfO{\boldsymbol{O}} \def\bfP{\boldsymbol{P}} \def\bfQ{\boldsymbol{Q}} \def\bfR{\boldsymbol{R}} \def\bfS{\boldsymbol{S}} \def\bfT{\boldsymbol{T}} \def\bfU{\boldsymbol{U}} \def\bfV{\boldsymbol{V}} \def\bfW{\boldsymbol{W}} \def\bfX{\boldsymbol{X}} \def\bfY{\boldsymbol{Y}} \def\bfZ{\boldsymbol{Z}} \def\bfalpha{\boldsymbol{\alpha}} \def\bfa{\boldsymbol{a}} \def\bfbeta{\boldsymbol{\beta}} \def\bfb{\boldsymbol{b}} \def\bfcd{\dot{\bfc}} \def\bfchi{\boldsymbol{\chi}} \def\bfc{\boldsymbol{c}} \def\bfd{\boldsymbol{d}} \def\bfe{\boldsymbol{e}} \def\bff{\boldsymbol{f}} \def\bfgamma{\boldsymbol{\gamma}} \def\bfg{\boldsymbol{g}} \def\bfh{\boldsymbol{h}} \def\bfi{\boldsymbol{i}} \def\bfj{\boldsymbol{j}} \def\bfk{\boldsymbol{k}} \def\bflambda{\boldsymbol{\lambda}} \def\bfl{\boldsymbol{l}} \def\bfm{\boldsymbol{m}} \def\bfn{\boldsymbol{n}} \def\bfomega{\boldsymbol{\omega}} \def\bfone{\boldsymbol{1}} \def\bfo{\boldsymbol{o}} \def\bfpdd{\ddot{\bfp}} \def\bfpd{\dot{\bfp}} \def\bfphi{\boldsymbol{\phi}} \def\bfp{\boldsymbol{p}} \def\bfq{\boldsymbol{q}} \def\bfr{\boldsymbol{r}} \def\bfsigma{\boldsymbol{\sigma}} \def\bfs{\boldsymbol{s}} \def\bftau{\boldsymbol{\tau}} \def\bft{\boldsymbol{t}} \def\bfu{\boldsymbol{u}} \def\bfv{\boldsymbol{v}} \def\bfw{\boldsymbol{w}} \def\bfxi{\boldsymbol{\xi}} \def\bfx{\boldsymbol{x}} \def\bfy{\boldsymbol{y}} \def\bfzero{\boldsymbol{0}} \def\bfz{\boldsymbol{z}} \def\calA{\mathcal{A}} \def\calB{\mathcal{B}} \def\calC{\mathcal{C}} \def\calD{\mathcal{D}} \def\calE{\mathcal{E}} \def\calF{\mathcal{F}} \def\calG{\mathcal{G}} \def\calH{\mathcal{H}} \def\calI{\mathcal{I}} \def\calJ{\mathcal{J}} \def\calK{\mathcal{K}} \def\calL{\mathcal{L}} \def\calM{\mathcal{M}} \def\calN{\mathcal{N}} \def\calO{\mathcal{O}} \def\calP{\mathcal{P}} \def\calQ{\mathcal{Q}} \def\calR{\mathcal{R}} \def\calS{\mathcal{S}} \def\calT{\mathcal{T}} \def\calU{\mathcal{U}} \def\calV{\mathcal{V}} \def\calW{\mathcal{W}} \def\calX{\mathcal{X}} \def\calY{\mathcal{Y}} \def\calZ{\mathcal{Z}} \def\d#1{{\rm d}{#1}} \def\defeq{\stackrel{\mathrm{def}}{=}} \def\dim{\rm dim} \def\p{\boldsymbol{p}} \def\qdd{\ddot{\bfq}} \def\qd{\dot{\bfq}} \def\q{\boldsymbol{q}} \def\xdd{\ddot{x}} \def\xd{\dot{x}} \def\ydd{\ddot{y}} \def\yd{\dot{y}} \def\zdd{\ddot{z}} \def\zd{\dot{z}} \{C_i\} where the robot contacts its environment. Assuming that the environment surface is smooth enough, one can consider its unit normal ni\def\LdG{\dot{L}_G} \def\Ld{\dot{L}} \def\bfA{\boldsymbol{A}} \def\bfB{\boldsymbol{B}} \def\bfC{\boldsymbol{C}} \def\bfD{\boldsymbol{D}} \def\bfE{\boldsymbol{E}} \def\bfF{\boldsymbol{F}} \def\bfG{\boldsymbol{G}} \def\bfH{\boldsymbol{H}} \def\bfI{\boldsymbol{I}} \def\bfJ{\boldsymbol{J}} \def\bfK{\boldsymbol{K}} \def\bfL{\boldsymbol{L}} \def\bfM{\boldsymbol{M}} \def\bfN{\boldsymbol{N}} \def\bfO{\boldsymbol{O}} \def\bfP{\boldsymbol{P}} \def\bfQ{\boldsymbol{Q}} \def\bfR{\boldsymbol{R}} \def\bfS{\boldsymbol{S}} \def\bfT{\boldsymbol{T}} \def\bfU{\boldsymbol{U}} \def\bfV{\boldsymbol{V}} \def\bfW{\boldsymbol{W}} \def\bfX{\boldsymbol{X}} \def\bfY{\boldsymbol{Y}} \def\bfZ{\boldsymbol{Z}} \def\bfalpha{\boldsymbol{\alpha}} \def\bfa{\boldsymbol{a}} \def\bfbeta{\boldsymbol{\beta}} \def\bfb{\boldsymbol{b}} \def\bfcd{\dot{\bfc}} \def\bfchi{\boldsymbol{\chi}} \def\bfc{\boldsymbol{c}} \def\bfd{\boldsymbol{d}} \def\bfe{\boldsymbol{e}} \def\bff{\boldsymbol{f}} \def\bfgamma{\boldsymbol{\gamma}} \def\bfg{\boldsymbol{g}} \def\bfh{\boldsymbol{h}} \def\bfi{\boldsymbol{i}} \def\bfj{\boldsymbol{j}} \def\bfk{\boldsymbol{k}} \def\bflambda{\boldsymbol{\lambda}} \def\bfl{\boldsymbol{l}} \def\bfm{\boldsymbol{m}} \def\bfn{\boldsymbol{n}} \def\bfomega{\boldsymbol{\omega}} \def\bfone{\boldsymbol{1}} \def\bfo{\boldsymbol{o}} \def\bfpdd{\ddot{\bfp}} \def\bfpd{\dot{\bfp}} \def\bfphi{\boldsymbol{\phi}} \def\bfp{\boldsymbol{p}} \def\bfq{\boldsymbol{q}} \def\bfr{\boldsymbol{r}} \def\bfsigma{\boldsymbol{\sigma}} \def\bfs{\boldsymbol{s}} \def\bftau{\boldsymbol{\tau}} \def\bft{\boldsymbol{t}} \def\bfu{\boldsymbol{u}} \def\bfv{\boldsymbol{v}} \def\bfw{\boldsymbol{w}} \def\bfxi{\boldsymbol{\xi}} \def\bfx{\boldsymbol{x}} \def\bfy{\boldsymbol{y}} \def\bfzero{\boldsymbol{0}} \def\bfz{\boldsymbol{z}} \def\calA{\mathcal{A}} \def\calB{\mathcal{B}} \def\calC{\mathcal{C}} \def\calD{\mathcal{D}} \def\calE{\mathcal{E}} \def\calF{\mathcal{F}} \def\calG{\mathcal{G}} \def\calH{\mathcal{H}} \def\calI{\mathcal{I}} \def\calJ{\mathcal{J}} \def\calK{\mathcal{K}} \def\calL{\mathcal{L}} \def\calM{\mathcal{M}} \def\calN{\mathcal{N}} \def\calO{\mathcal{O}} \def\calP{\mathcal{P}} \def\calQ{\mathcal{Q}} \def\calR{\mathcal{R}} \def\calS{\mathcal{S}} \def\calT{\mathcal{T}} \def\calU{\mathcal{U}} \def\calV{\mathcal{V}} \def\calW{\mathcal{W}} \def\calX{\mathcal{X}} \def\calY{\mathcal{Y}} \def\calZ{\mathcal{Z}} \def\d#1{{\rm d}{#1}} \def\defeq{\stackrel{\mathrm{def}}{=}} \def\dim{\rm dim} \def\p{\boldsymbol{p}} \def\qdd{\ddot{\bfq}} \def\qd{\dot{\bfq}} \def\q{\boldsymbol{q}} \def\xdd{\ddot{x}} \def\xd{\dot{x}} \def\ydd{\ddot{y}} \def\yd{\dot{y}} \def\zdd{\ddot{z}} \def\zd{\dot{z}} \bfn_i at Ci\def\LdG{\dot{L}_G} \def\Ld{\dot{L}} \def\bfA{\boldsymbol{A}} \def\bfB{\boldsymbol{B}} \def\bfC{\boldsymbol{C}} \def\bfD{\boldsymbol{D}} \def\bfE{\boldsymbol{E}} \def\bfF{\boldsymbol{F}} \def\bfG{\boldsymbol{G}} \def\bfH{\boldsymbol{H}} \def\bfI{\boldsymbol{I}} \def\bfJ{\boldsymbol{J}} \def\bfK{\boldsymbol{K}} \def\bfL{\boldsymbol{L}} \def\bfM{\boldsymbol{M}} \def\bfN{\boldsymbol{N}} \def\bfO{\boldsymbol{O}} \def\bfP{\boldsymbol{P}} \def\bfQ{\boldsymbol{Q}} \def\bfR{\boldsymbol{R}} \def\bfS{\boldsymbol{S}} \def\bfT{\boldsymbol{T}} \def\bfU{\boldsymbol{U}} \def\bfV{\boldsymbol{V}} \def\bfW{\boldsymbol{W}} \def\bfX{\boldsymbol{X}} \def\bfY{\boldsymbol{Y}} \def\bfZ{\boldsymbol{Z}} \def\bfalpha{\boldsymbol{\alpha}} \def\bfa{\boldsymbol{a}} \def\bfbeta{\boldsymbol{\beta}} \def\bfb{\boldsymbol{b}} \def\bfcd{\dot{\bfc}} \def\bfchi{\boldsymbol{\chi}} \def\bfc{\boldsymbol{c}} \def\bfd{\boldsymbol{d}} \def\bfe{\boldsymbol{e}} \def\bff{\boldsymbol{f}} \def\bfgamma{\boldsymbol{\gamma}} \def\bfg{\boldsymbol{g}} \def\bfh{\boldsymbol{h}} \def\bfi{\boldsymbol{i}} \def\bfj{\boldsymbol{j}} \def\bfk{\boldsymbol{k}} \def\bflambda{\boldsymbol{\lambda}} \def\bfl{\boldsymbol{l}} \def\bfm{\boldsymbol{m}} \def\bfn{\boldsymbol{n}} \def\bfomega{\boldsymbol{\omega}} \def\bfone{\boldsymbol{1}} \def\bfo{\boldsymbol{o}} \def\bfpdd{\ddot{\bfp}} \def\bfpd{\dot{\bfp}} \def\bfphi{\boldsymbol{\phi}} \def\bfp{\boldsymbol{p}} \def\bfq{\boldsymbol{q}} \def\bfr{\boldsymbol{r}} \def\bfsigma{\boldsymbol{\sigma}} \def\bfs{\boldsymbol{s}} \def\bftau{\boldsymbol{\tau}} \def\bft{\boldsymbol{t}} \def\bfu{\boldsymbol{u}} \def\bfv{\boldsymbol{v}} \def\bfw{\boldsymbol{w}} \def\bfxi{\boldsymbol{\xi}} \def\bfx{\boldsymbol{x}} \def\bfy{\boldsymbol{y}} \def\bfzero{\boldsymbol{0}} \def\bfz{\boldsymbol{z}} \def\calA{\mathcal{A}} \def\calB{\mathcal{B}} \def\calC{\mathcal{C}} \def\calD{\mathcal{D}} \def\calE{\mathcal{E}} \def\calF{\mathcal{F}} \def\calG{\mathcal{G}} \def\calH{\mathcal{H}} \def\calI{\mathcal{I}} \def\calJ{\mathcal{J}} \def\calK{\mathcal{K}} \def\calL{\mathcal{L}} \def\calM{\mathcal{M}} \def\calN{\mathcal{N}} \def\calO{\mathcal{O}} \def\calP{\mathcal{P}} \def\calQ{\mathcal{Q}} \def\calR{\mathcal{R}} \def\calS{\mathcal{S}} \def\calT{\mathcal{T}} \def\calU{\mathcal{U}} \def\calV{\mathcal{V}} \def\calW{\mathcal{W}} \def\calX{\mathcal{X}} \def\calY{\mathcal{Y}} \def\calZ{\mathcal{Z}} \def\d#1{{\rm d}{#1}} \def\defeq{\stackrel{\mathrm{def}}{=}} \def\dim{\rm dim} \def\p{\boldsymbol{p}} \def\qdd{\ddot{\bfq}} \def\qd{\dot{\bfq}} \def\q{\boldsymbol{q}} \def\xdd{\ddot{x}} \def\xd{\dot{x}} \def\ydd{\ddot{y}} \def\yd{\dot{y}} \def\zdd{\ddot{z}} \def\zd{\dot{z}} C_i, pointing from the environment to the robot. Let fic\def\LdG{\dot{L}_G} \def\Ld{\dot{L}} \def\bfA{\boldsymbol{A}} \def\bfB{\boldsymbol{B}} \def\bfC{\boldsymbol{C}} \def\bfD{\boldsymbol{D}} \def\bfE{\boldsymbol{E}} \def\bfF{\boldsymbol{F}} \def\bfG{\boldsymbol{G}} \def\bfH{\boldsymbol{H}} \def\bfI{\boldsymbol{I}} \def\bfJ{\boldsymbol{J}} \def\bfK{\boldsymbol{K}} \def\bfL{\boldsymbol{L}} \def\bfM{\boldsymbol{M}} \def\bfN{\boldsymbol{N}} \def\bfO{\boldsymbol{O}} \def\bfP{\boldsymbol{P}} \def\bfQ{\boldsymbol{Q}} \def\bfR{\boldsymbol{R}} \def\bfS{\boldsymbol{S}} \def\bfT{\boldsymbol{T}} \def\bfU{\boldsymbol{U}} \def\bfV{\boldsymbol{V}} \def\bfW{\boldsymbol{W}} \def\bfX{\boldsymbol{X}} \def\bfY{\boldsymbol{Y}} \def\bfZ{\boldsymbol{Z}} \def\bfalpha{\boldsymbol{\alpha}} \def\bfa{\boldsymbol{a}} \def\bfbeta{\boldsymbol{\beta}} \def\bfb{\boldsymbol{b}} \def\bfcd{\dot{\bfc}} \def\bfchi{\boldsymbol{\chi}} \def\bfc{\boldsymbol{c}} \def\bfd{\boldsymbol{d}} \def\bfe{\boldsymbol{e}} \def\bff{\boldsymbol{f}} \def\bfgamma{\boldsymbol{\gamma}} \def\bfg{\boldsymbol{g}} \def\bfh{\boldsymbol{h}} \def\bfi{\boldsymbol{i}} \def\bfj{\boldsymbol{j}} \def\bfk{\boldsymbol{k}} \def\bflambda{\boldsymbol{\lambda}} \def\bfl{\boldsymbol{l}} \def\bfm{\boldsymbol{m}} \def\bfn{\boldsymbol{n}} \def\bfomega{\boldsymbol{\omega}} \def\bfone{\boldsymbol{1}} \def\bfo{\boldsymbol{o}} \def\bfpdd{\ddot{\bfp}} \def\bfpd{\dot{\bfp}} \def\bfphi{\boldsymbol{\phi}} \def\bfp{\boldsymbol{p}} \def\bfq{\boldsymbol{q}} \def\bfr{\boldsymbol{r}} \def\bfsigma{\boldsymbol{\sigma}} \def\bfs{\boldsymbol{s}} \def\bftau{\boldsymbol{\tau}} \def\bft{\boldsymbol{t}} \def\bfu{\boldsymbol{u}} \def\bfv{\boldsymbol{v}} \def\bfw{\boldsymbol{w}} \def\bfxi{\boldsymbol{\xi}} \def\bfx{\boldsymbol{x}} \def\bfy{\boldsymbol{y}} \def\bfzero{\boldsymbol{0}} \def\bfz{\boldsymbol{z}} \def\calA{\mathcal{A}} \def\calB{\mathcal{B}} \def\calC{\mathcal{C}} \def\calD{\mathcal{D}} \def\calE{\mathcal{E}} \def\calF{\mathcal{F}} \def\calG{\mathcal{G}} \def\calH{\mathcal{H}} \def\calI{\mathcal{I}} \def\calJ{\mathcal{J}} \def\calK{\mathcal{K}} \def\calL{\mathcal{L}} \def\calM{\mathcal{M}} \def\calN{\mathcal{N}} \def\calO{\mathcal{O}} \def\calP{\mathcal{P}} \def\calQ{\mathcal{Q}} \def\calR{\mathcal{R}} \def\calS{\mathcal{S}} \def\calT{\mathcal{T}} \def\calU{\mathcal{U}} \def\calV{\mathcal{V}} \def\calW{\mathcal{W}} \def\calX{\mathcal{X}} \def\calY{\mathcal{Y}} \def\calZ{\mathcal{Z}} \def\d#1{{\rm d}{#1}} \def\defeq{\stackrel{\mathrm{def}}{=}} \def\dim{\rm dim} \def\p{\boldsymbol{p}} \def\qdd{\ddot{\bfq}} \def\qd{\dot{\bfq}} \def\q{\boldsymbol{q}} \def\xdd{\ddot{x}} \def\xd{\dot{x}} \def\ydd{\ddot{y}} \def\yd{\dot{y}} \def\zdd{\ddot{z}} \def\zd{\dot{z}} \bff^c_i denote the contact force exerted at Ci\def\LdG{\dot{L}_G} \def\Ld{\dot{L}} \def\bfA{\boldsymbol{A}} \def\bfB{\boldsymbol{B}} \def\bfC{\boldsymbol{C}} \def\bfD{\boldsymbol{D}} \def\bfE{\boldsymbol{E}} \def\bfF{\boldsymbol{F}} \def\bfG{\boldsymbol{G}} \def\bfH{\boldsymbol{H}} \def\bfI{\boldsymbol{I}} \def\bfJ{\boldsymbol{J}} \def\bfK{\boldsymbol{K}} \def\bfL{\boldsymbol{L}} \def\bfM{\boldsymbol{M}} \def\bfN{\boldsymbol{N}} \def\bfO{\boldsymbol{O}} \def\bfP{\boldsymbol{P}} \def\bfQ{\boldsymbol{Q}} \def\bfR{\boldsymbol{R}} \def\bfS{\boldsymbol{S}} \def\bfT{\boldsymbol{T}} \def\bfU{\boldsymbol{U}} \def\bfV{\boldsymbol{V}} \def\bfW{\boldsymbol{W}} \def\bfX{\boldsymbol{X}} \def\bfY{\boldsymbol{Y}} \def\bfZ{\boldsymbol{Z}} \def\bfalpha{\boldsymbol{\alpha}} \def\bfa{\boldsymbol{a}} \def\bfbeta{\boldsymbol{\beta}} \def\bfb{\boldsymbol{b}} \def\bfcd{\dot{\bfc}} \def\bfchi{\boldsymbol{\chi}} \def\bfc{\boldsymbol{c}} \def\bfd{\boldsymbol{d}} \def\bfe{\boldsymbol{e}} \def\bff{\boldsymbol{f}} \def\bfgamma{\boldsymbol{\gamma}} \def\bfg{\boldsymbol{g}} \def\bfh{\boldsymbol{h}} \def\bfi{\boldsymbol{i}} \def\bfj{\boldsymbol{j}} \def\bfk{\boldsymbol{k}} \def\bflambda{\boldsymbol{\lambda}} \def\bfl{\boldsymbol{l}} \def\bfm{\boldsymbol{m}} \def\bfn{\boldsymbol{n}} \def\bfomega{\boldsymbol{\omega}} \def\bfone{\boldsymbol{1}} \def\bfo{\boldsymbol{o}} \def\bfpdd{\ddot{\bfp}} \def\bfpd{\dot{\bfp}} \def\bfphi{\boldsymbol{\phi}} \def\bfp{\boldsymbol{p}} \def\bfq{\boldsymbol{q}} \def\bfr{\boldsymbol{r}} \def\bfsigma{\boldsymbol{\sigma}} \def\bfs{\boldsymbol{s}} \def\bftau{\boldsymbol{\tau}} \def\bft{\boldsymbol{t}} \def\bfu{\boldsymbol{u}} \def\bfv{\boldsymbol{v}} \def\bfw{\boldsymbol{w}} \def\bfxi{\boldsymbol{\xi}} \def\bfx{\boldsymbol{x}} \def\bfy{\boldsymbol{y}} \def\bfzero{\boldsymbol{0}} \def\bfz{\boldsymbol{z}} \def\calA{\mathcal{A}} \def\calB{\mathcal{B}} \def\calC{\mathcal{C}} \def\calD{\mathcal{D}} \def\calE{\mathcal{E}} \def\calF{\mathcal{F}} \def\calG{\mathcal{G}} \def\calH{\mathcal{H}} \def\calI{\mathcal{I}} \def\calJ{\mathcal{J}} \def\calK{\mathcal{K}} \def\calL{\mathcal{L}} \def\calM{\mathcal{M}} \def\calN{\mathcal{N}} \def\calO{\mathcal{O}} \def\calP{\mathcal{P}} \def\calQ{\mathcal{Q}} \def\calR{\mathcal{R}} \def\calS{\mathcal{S}} \def\calT{\mathcal{T}} \def\calU{\mathcal{U}} \def\calV{\mathcal{V}} \def\calW{\mathcal{W}} \def\calX{\mathcal{X}} \def\calY{\mathcal{Y}} \def\calZ{\mathcal{Z}} \def\d#1{{\rm d}{#1}} \def\defeq{\stackrel{\mathrm{def}}{=}} \def\dim{\rm dim} \def\p{\boldsymbol{p}} \def\qdd{\ddot{\bfq}} \def\qd{\dot{\bfq}} \def\q{\boldsymbol{q}} \def\xdd{\ddot{x}} \def\xd{\dot{x}} \def\ydd{\ddot{y}} \def\yd{\dot{y}} \def\zdd{\ddot{z}} \def\zd{\dot{z}} C_i by the environment onto the robot:

  • the normal component fin=def(nific)ni\def\LdG{\dot{L}_G} \def\Ld{\dot{L}} \def\bfA{\boldsymbol{A}} \def\bfB{\boldsymbol{B}} \def\bfC{\boldsymbol{C}} \def\bfD{\boldsymbol{D}} \def\bfE{\boldsymbol{E}} \def\bfF{\boldsymbol{F}} \def\bfG{\boldsymbol{G}} \def\bfH{\boldsymbol{H}} \def\bfI{\boldsymbol{I}} \def\bfJ{\boldsymbol{J}} \def\bfK{\boldsymbol{K}} \def\bfL{\boldsymbol{L}} \def\bfM{\boldsymbol{M}} \def\bfN{\boldsymbol{N}} \def\bfO{\boldsymbol{O}} \def\bfP{\boldsymbol{P}} \def\bfQ{\boldsymbol{Q}} \def\bfR{\boldsymbol{R}} \def\bfS{\boldsymbol{S}} \def\bfT{\boldsymbol{T}} \def\bfU{\boldsymbol{U}} \def\bfV{\boldsymbol{V}} \def\bfW{\boldsymbol{W}} \def\bfX{\boldsymbol{X}} \def\bfY{\boldsymbol{Y}} \def\bfZ{\boldsymbol{Z}} \def\bfalpha{\boldsymbol{\alpha}} \def\bfa{\boldsymbol{a}} \def\bfbeta{\boldsymbol{\beta}} \def\bfb{\boldsymbol{b}} \def\bfcd{\dot{\bfc}} \def\bfchi{\boldsymbol{\chi}} \def\bfc{\boldsymbol{c}} \def\bfd{\boldsymbol{d}} \def\bfe{\boldsymbol{e}} \def\bff{\boldsymbol{f}} \def\bfgamma{\boldsymbol{\gamma}} \def\bfg{\boldsymbol{g}} \def\bfh{\boldsymbol{h}} \def\bfi{\boldsymbol{i}} \def\bfj{\boldsymbol{j}} \def\bfk{\boldsymbol{k}} \def\bflambda{\boldsymbol{\lambda}} \def\bfl{\boldsymbol{l}} \def\bfm{\boldsymbol{m}} \def\bfn{\boldsymbol{n}} \def\bfomega{\boldsymbol{\omega}} \def\bfone{\boldsymbol{1}} \def\bfo{\boldsymbol{o}} \def\bfpdd{\ddot{\bfp}} \def\bfpd{\dot{\bfp}} \def\bfphi{\boldsymbol{\phi}} \def\bfp{\boldsymbol{p}} \def\bfq{\boldsymbol{q}} \def\bfr{\boldsymbol{r}} \def\bfsigma{\boldsymbol{\sigma}} \def\bfs{\boldsymbol{s}} \def\bftau{\boldsymbol{\tau}} \def\bft{\boldsymbol{t}} \def\bfu{\boldsymbol{u}} \def\bfv{\boldsymbol{v}} \def\bfw{\boldsymbol{w}} \def\bfxi{\boldsymbol{\xi}} \def\bfx{\boldsymbol{x}} \def\bfy{\boldsymbol{y}} \def\bfzero{\boldsymbol{0}} \def\bfz{\boldsymbol{z}} \def\calA{\mathcal{A}} \def\calB{\mathcal{B}} \def\calC{\mathcal{C}} \def\calD{\mathcal{D}} \def\calE{\mathcal{E}} \def\calF{\mathcal{F}} \def\calG{\mathcal{G}} \def\calH{\mathcal{H}} \def\calI{\mathcal{I}} \def\calJ{\mathcal{J}} \def\calK{\mathcal{K}} \def\calL{\mathcal{L}} \def\calM{\mathcal{M}} \def\calN{\mathcal{N}} \def\calO{\mathcal{O}} \def\calP{\mathcal{P}} \def\calQ{\mathcal{Q}} \def\calR{\mathcal{R}} \def\calS{\mathcal{S}} \def\calT{\mathcal{T}} \def\calU{\mathcal{U}} \def\calV{\mathcal{V}} \def\calW{\mathcal{W}} \def\calX{\mathcal{X}} \def\calY{\mathcal{Y}} \def\calZ{\mathcal{Z}} \def\d#1{{\rm d}{#1}} \def\defeq{\stackrel{\mathrm{def}}{=}} \def\dim{\rm dim} \def\p{\boldsymbol{p}} \def\qdd{\ddot{\bfq}} \def\qd{\dot{\bfq}} \def\q{\boldsymbol{q}} \def\xdd{\ddot{x}} \def\xd{\dot{x}} \def\ydd{\ddot{y}} \def\yd{\dot{y}} \def\zdd{\ddot{z}} \def\zd{\dot{z}} \bff^n_i \defeq (\bfn_i \cdot \bff^c_i) \bfn_i is the normal force, and
  • the tangential component fit=deffic(nific)ni\def\LdG{\dot{L}_G} \def\Ld{\dot{L}} \def\bfA{\boldsymbol{A}} \def\bfB{\boldsymbol{B}} \def\bfC{\boldsymbol{C}} \def\bfD{\boldsymbol{D}} \def\bfE{\boldsymbol{E}} \def\bfF{\boldsymbol{F}} \def\bfG{\boldsymbol{G}} \def\bfH{\boldsymbol{H}} \def\bfI{\boldsymbol{I}} \def\bfJ{\boldsymbol{J}} \def\bfK{\boldsymbol{K}} \def\bfL{\boldsymbol{L}} \def\bfM{\boldsymbol{M}} \def\bfN{\boldsymbol{N}} \def\bfO{\boldsymbol{O}} \def\bfP{\boldsymbol{P}} \def\bfQ{\boldsymbol{Q}} \def\bfR{\boldsymbol{R}} \def\bfS{\boldsymbol{S}} \def\bfT{\boldsymbol{T}} \def\bfU{\boldsymbol{U}} \def\bfV{\boldsymbol{V}} \def\bfW{\boldsymbol{W}} \def\bfX{\boldsymbol{X}} \def\bfY{\boldsymbol{Y}} \def\bfZ{\boldsymbol{Z}} \def\bfalpha{\boldsymbol{\alpha}} \def\bfa{\boldsymbol{a}} \def\bfbeta{\boldsymbol{\beta}} \def\bfb{\boldsymbol{b}} \def\bfcd{\dot{\bfc}} \def\bfchi{\boldsymbol{\chi}} \def\bfc{\boldsymbol{c}} \def\bfd{\boldsymbol{d}} \def\bfe{\boldsymbol{e}} \def\bff{\boldsymbol{f}} \def\bfgamma{\boldsymbol{\gamma}} \def\bfg{\boldsymbol{g}} \def\bfh{\boldsymbol{h}} \def\bfi{\boldsymbol{i}} \def\bfj{\boldsymbol{j}} \def\bfk{\boldsymbol{k}} \def\bflambda{\boldsymbol{\lambda}} \def\bfl{\boldsymbol{l}} \def\bfm{\boldsymbol{m}} \def\bfn{\boldsymbol{n}} \def\bfomega{\boldsymbol{\omega}} \def\bfone{\boldsymbol{1}} \def\bfo{\boldsymbol{o}} \def\bfpdd{\ddot{\bfp}} \def\bfpd{\dot{\bfp}} \def\bfphi{\boldsymbol{\phi}} \def\bfp{\boldsymbol{p}} \def\bfq{\boldsymbol{q}} \def\bfr{\boldsymbol{r}} \def\bfsigma{\boldsymbol{\sigma}} \def\bfs{\boldsymbol{s}} \def\bftau{\boldsymbol{\tau}} \def\bft{\boldsymbol{t}} \def\bfu{\boldsymbol{u}} \def\bfv{\boldsymbol{v}} \def\bfw{\boldsymbol{w}} \def\bfxi{\boldsymbol{\xi}} \def\bfx{\boldsymbol{x}} \def\bfy{\boldsymbol{y}} \def\bfzero{\boldsymbol{0}} \def\bfz{\boldsymbol{z}} \def\calA{\mathcal{A}} \def\calB{\mathcal{B}} \def\calC{\mathcal{C}} \def\calD{\mathcal{D}} \def\calE{\mathcal{E}} \def\calF{\mathcal{F}} \def\calG{\mathcal{G}} \def\calH{\mathcal{H}} \def\calI{\mathcal{I}} \def\calJ{\mathcal{J}} \def\calK{\mathcal{K}} \def\calL{\mathcal{L}} \def\calM{\mathcal{M}} \def\calN{\mathcal{N}} \def\calO{\mathcal{O}} \def\calP{\mathcal{P}} \def\calQ{\mathcal{Q}} \def\calR{\mathcal{R}} \def\calS{\mathcal{S}} \def\calT{\mathcal{T}} \def\calU{\mathcal{U}} \def\calV{\mathcal{V}} \def\calW{\mathcal{W}} \def\calX{\mathcal{X}} \def\calY{\mathcal{Y}} \def\calZ{\mathcal{Z}} \def\d#1{{\rm d}{#1}} \def\defeq{\stackrel{\mathrm{def}}{=}} \def\dim{\rm dim} \def\p{\boldsymbol{p}} \def\qdd{\ddot{\bfq}} \def\qd{\dot{\bfq}} \def\q{\boldsymbol{q}} \def\xdd{\ddot{x}} \def\xd{\dot{x}} \def\ydd{\ddot{y}} \def\yd{\dot{y}} \def\zdd{\ddot{z}} \def\zd{\dot{z}} \bff^t_i \defeq \bff^c_i - (\bfn_i \cdot \bff^c_i) \bfn_i is the friction force at Ci\def\LdG{\dot{L}_G} \def\Ld{\dot{L}} \def\bfA{\boldsymbol{A}} \def\bfB{\boldsymbol{B}} \def\bfC{\boldsymbol{C}} \def\bfD{\boldsymbol{D}} \def\bfE{\boldsymbol{E}} \def\bfF{\boldsymbol{F}} \def\bfG{\boldsymbol{G}} \def\bfH{\boldsymbol{H}} \def\bfI{\boldsymbol{I}} \def\bfJ{\boldsymbol{J}} \def\bfK{\boldsymbol{K}} \def\bfL{\boldsymbol{L}} \def\bfM{\boldsymbol{M}} \def\bfN{\boldsymbol{N}} \def\bfO{\boldsymbol{O}} \def\bfP{\boldsymbol{P}} \def\bfQ{\boldsymbol{Q}} \def\bfR{\boldsymbol{R}} \def\bfS{\boldsymbol{S}} \def\bfT{\boldsymbol{T}} \def\bfU{\boldsymbol{U}} \def\bfV{\boldsymbol{V}} \def\bfW{\boldsymbol{W}} \def\bfX{\boldsymbol{X}} \def\bfY{\boldsymbol{Y}} \def\bfZ{\boldsymbol{Z}} \def\bfalpha{\boldsymbol{\alpha}} \def\bfa{\boldsymbol{a}} \def\bfbeta{\boldsymbol{\beta}} \def\bfb{\boldsymbol{b}} \def\bfcd{\dot{\bfc}} \def\bfchi{\boldsymbol{\chi}} \def\bfc{\boldsymbol{c}} \def\bfd{\boldsymbol{d}} \def\bfe{\boldsymbol{e}} \def\bff{\boldsymbol{f}} \def\bfgamma{\boldsymbol{\gamma}} \def\bfg{\boldsymbol{g}} \def\bfh{\boldsymbol{h}} \def\bfi{\boldsymbol{i}} \def\bfj{\boldsymbol{j}} \def\bfk{\boldsymbol{k}} \def\bflambda{\boldsymbol{\lambda}} \def\bfl{\boldsymbol{l}} \def\bfm{\boldsymbol{m}} \def\bfn{\boldsymbol{n}} \def\bfomega{\boldsymbol{\omega}} \def\bfone{\boldsymbol{1}} \def\bfo{\boldsymbol{o}} \def\bfpdd{\ddot{\bfp}} \def\bfpd{\dot{\bfp}} \def\bfphi{\boldsymbol{\phi}} \def\bfp{\boldsymbol{p}} \def\bfq{\boldsymbol{q}} \def\bfr{\boldsymbol{r}} \def\bfsigma{\boldsymbol{\sigma}} \def\bfs{\boldsymbol{s}} \def\bftau{\boldsymbol{\tau}} \def\bft{\boldsymbol{t}} \def\bfu{\boldsymbol{u}} \def\bfv{\boldsymbol{v}} \def\bfw{\boldsymbol{w}} \def\bfxi{\boldsymbol{\xi}} \def\bfx{\boldsymbol{x}} \def\bfy{\boldsymbol{y}} \def\bfzero{\boldsymbol{0}} \def\bfz{\boldsymbol{z}} \def\calA{\mathcal{A}} \def\calB{\mathcal{B}} \def\calC{\mathcal{C}} \def\calD{\mathcal{D}} \def\calE{\mathcal{E}} \def\calF{\mathcal{F}} \def\calG{\mathcal{G}} \def\calH{\mathcal{H}} \def\calI{\mathcal{I}} \def\calJ{\mathcal{J}} \def\calK{\mathcal{K}} \def\calL{\mathcal{L}} \def\calM{\mathcal{M}} \def\calN{\mathcal{N}} \def\calO{\mathcal{O}} \def\calP{\mathcal{P}} \def\calQ{\mathcal{Q}} \def\calR{\mathcal{R}} \def\calS{\mathcal{S}} \def\calT{\mathcal{T}} \def\calU{\mathcal{U}} \def\calV{\mathcal{V}} \def\calW{\mathcal{W}} \def\calX{\mathcal{X}} \def\calY{\mathcal{Y}} \def\calZ{\mathcal{Z}} \def\d#1{{\rm d}{#1}} \def\defeq{\stackrel{\mathrm{def}}{=}} \def\dim{\rm dim} \def\p{\boldsymbol{p}} \def\qdd{\ddot{\bfq}} \def\qd{\dot{\bfq}} \def\q{\boldsymbol{q}} \def\xdd{\ddot{x}} \def\xd{\dot{x}} \def\ydd{\ddot{y}} \def\yd{\dot{y}} \def\zdd{\ddot{z}} \def\zd{\dot{z}} C_i.

A point contact remains in the fixed contact mode while its contact force fic\def\LdG{\dot{L}_G} \def\Ld{\dot{L}} \def\bfA{\boldsymbol{A}} \def\bfB{\boldsymbol{B}} \def\bfC{\boldsymbol{C}} \def\bfD{\boldsymbol{D}} \def\bfE{\boldsymbol{E}} \def\bfF{\boldsymbol{F}} \def\bfG{\boldsymbol{G}} \def\bfH{\boldsymbol{H}} \def\bfI{\boldsymbol{I}} \def\bfJ{\boldsymbol{J}} \def\bfK{\boldsymbol{K}} \def\bfL{\boldsymbol{L}} \def\bfM{\boldsymbol{M}} \def\bfN{\boldsymbol{N}} \def\bfO{\boldsymbol{O}} \def\bfP{\boldsymbol{P}} \def\bfQ{\boldsymbol{Q}} \def\bfR{\boldsymbol{R}} \def\bfS{\boldsymbol{S}} \def\bfT{\boldsymbol{T}} \def\bfU{\boldsymbol{U}} \def\bfV{\boldsymbol{V}} \def\bfW{\boldsymbol{W}} \def\bfX{\boldsymbol{X}} \def\bfY{\boldsymbol{Y}} \def\bfZ{\boldsymbol{Z}} \def\bfalpha{\boldsymbol{\alpha}} \def\bfa{\boldsymbol{a}} \def\bfbeta{\boldsymbol{\beta}} \def\bfb{\boldsymbol{b}} \def\bfcd{\dot{\bfc}} \def\bfchi{\boldsymbol{\chi}} \def\bfc{\boldsymbol{c}} \def\bfd{\boldsymbol{d}} \def\bfe{\boldsymbol{e}} \def\bff{\boldsymbol{f}} \def\bfgamma{\boldsymbol{\gamma}} \def\bfg{\boldsymbol{g}} \def\bfh{\boldsymbol{h}} \def\bfi{\boldsymbol{i}} \def\bfj{\boldsymbol{j}} \def\bfk{\boldsymbol{k}} \def\bflambda{\boldsymbol{\lambda}} \def\bfl{\boldsymbol{l}} \def\bfm{\boldsymbol{m}} \def\bfn{\boldsymbol{n}} \def\bfomega{\boldsymbol{\omega}} \def\bfone{\boldsymbol{1}} \def\bfo{\boldsymbol{o}} \def\bfpdd{\ddot{\bfp}} \def\bfpd{\dot{\bfp}} \def\bfphi{\boldsymbol{\phi}} \def\bfp{\boldsymbol{p}} \def\bfq{\boldsymbol{q}} \def\bfr{\boldsymbol{r}} \def\bfsigma{\boldsymbol{\sigma}} \def\bfs{\boldsymbol{s}} \def\bftau{\boldsymbol{\tau}} \def\bft{\boldsymbol{t}} \def\bfu{\boldsymbol{u}} \def\bfv{\boldsymbol{v}} \def\bfw{\boldsymbol{w}} \def\bfxi{\boldsymbol{\xi}} \def\bfx{\boldsymbol{x}} \def\bfy{\boldsymbol{y}} \def\bfzero{\boldsymbol{0}} \def\bfz{\boldsymbol{z}} \def\calA{\mathcal{A}} \def\calB{\mathcal{B}} \def\calC{\mathcal{C}} \def\calD{\mathcal{D}} \def\calE{\mathcal{E}} \def\calF{\mathcal{F}} \def\calG{\mathcal{G}} \def\calH{\mathcal{H}} \def\calI{\mathcal{I}} \def\calJ{\mathcal{J}} \def\calK{\mathcal{K}} \def\calL{\mathcal{L}} \def\calM{\mathcal{M}} \def\calN{\mathcal{N}} \def\calO{\mathcal{O}} \def\calP{\mathcal{P}} \def\calQ{\mathcal{Q}} \def\calR{\mathcal{R}} \def\calS{\mathcal{S}} \def\calT{\mathcal{T}} \def\calU{\mathcal{U}} \def\calV{\mathcal{V}} \def\calW{\mathcal{W}} \def\calX{\mathcal{X}} \def\calY{\mathcal{Y}} \def\calZ{\mathcal{Z}} \def\d#1{{\rm d}{#1}} \def\defeq{\stackrel{\mathrm{def}}{=}} \def\dim{\rm dim} \def\p{\boldsymbol{p}} \def\qdd{\ddot{\bfq}} \def\qd{\dot{\bfq}} \def\q{\boldsymbol{q}} \def\xdd{\ddot{x}} \def\xd{\dot{x}} \def\ydd{\ddot{y}} \def\yd{\dot{y}} \def\zdd{\ddot{z}} \def\zd{\dot{z}} \bff^c_i lies inside the friction cone directed by ni\def\LdG{\dot{L}_G} \def\Ld{\dot{L}} \def\bfA{\boldsymbol{A}} \def\bfB{\boldsymbol{B}} \def\bfC{\boldsymbol{C}} \def\bfD{\boldsymbol{D}} \def\bfE{\boldsymbol{E}} \def\bfF{\boldsymbol{F}} \def\bfG{\boldsymbol{G}} \def\bfH{\boldsymbol{H}} \def\bfI{\boldsymbol{I}} \def\bfJ{\boldsymbol{J}} \def\bfK{\boldsymbol{K}} \def\bfL{\boldsymbol{L}} \def\bfM{\boldsymbol{M}} \def\bfN{\boldsymbol{N}} \def\bfO{\boldsymbol{O}} \def\bfP{\boldsymbol{P}} \def\bfQ{\boldsymbol{Q}} \def\bfR{\boldsymbol{R}} \def\bfS{\boldsymbol{S}} \def\bfT{\boldsymbol{T}} \def\bfU{\boldsymbol{U}} \def\bfV{\boldsymbol{V}} \def\bfW{\boldsymbol{W}} \def\bfX{\boldsymbol{X}} \def\bfY{\boldsymbol{Y}} \def\bfZ{\boldsymbol{Z}} \def\bfalpha{\boldsymbol{\alpha}} \def\bfa{\boldsymbol{a}} \def\bfbeta{\boldsymbol{\beta}} \def\bfb{\boldsymbol{b}} \def\bfcd{\dot{\bfc}} \def\bfchi{\boldsymbol{\chi}} \def\bfc{\boldsymbol{c}} \def\bfd{\boldsymbol{d}} \def\bfe{\boldsymbol{e}} \def\bff{\boldsymbol{f}} \def\bfgamma{\boldsymbol{\gamma}} \def\bfg{\boldsymbol{g}} \def\bfh{\boldsymbol{h}} \def\bfi{\boldsymbol{i}} \def\bfj{\boldsymbol{j}} \def\bfk{\boldsymbol{k}} \def\bflambda{\boldsymbol{\lambda}} \def\bfl{\boldsymbol{l}} \def\bfm{\boldsymbol{m}} \def\bfn{\boldsymbol{n}} \def\bfomega{\boldsymbol{\omega}} \def\bfone{\boldsymbol{1}} \def\bfo{\boldsymbol{o}} \def\bfpdd{\ddot{\bfp}} \def\bfpd{\dot{\bfp}} \def\bfphi{\boldsymbol{\phi}} \def\bfp{\boldsymbol{p}} \def\bfq{\boldsymbol{q}} \def\bfr{\boldsymbol{r}} \def\bfsigma{\boldsymbol{\sigma}} \def\bfs{\boldsymbol{s}} \def\bftau{\boldsymbol{\tau}} \def\bft{\boldsymbol{t}} \def\bfu{\boldsymbol{u}} \def\bfv{\boldsymbol{v}} \def\bfw{\boldsymbol{w}} \def\bfxi{\boldsymbol{\xi}} \def\bfx{\boldsymbol{x}} \def\bfy{\boldsymbol{y}} \def\bfzero{\boldsymbol{0}} \def\bfz{\boldsymbol{z}} \def\calA{\mathcal{A}} \def\calB{\mathcal{B}} \def\calC{\mathcal{C}} \def\calD{\mathcal{D}} \def\calE{\mathcal{E}} \def\calF{\mathcal{F}} \def\calG{\mathcal{G}} \def\calH{\mathcal{H}} \def\calI{\mathcal{I}} \def\calJ{\mathcal{J}} \def\calK{\mathcal{K}} \def\calL{\mathcal{L}} \def\calM{\mathcal{M}} \def\calN{\mathcal{N}} \def\calO{\mathcal{O}} \def\calP{\mathcal{P}} \def\calQ{\mathcal{Q}} \def\calR{\mathcal{R}} \def\calS{\mathcal{S}} \def\calT{\mathcal{T}} \def\calU{\mathcal{U}} \def\calV{\mathcal{V}} \def\calW{\mathcal{W}} \def\calX{\mathcal{X}} \def\calY{\mathcal{Y}} \def\calZ{\mathcal{Z}} \def\d#1{{\rm d}{#1}} \def\defeq{\stackrel{\mathrm{def}}{=}} \def\dim{\rm dim} \def\p{\boldsymbol{p}} \def\qdd{\ddot{\bfq}} \def\qd{\dot{\bfq}} \def\q{\boldsymbol{q}} \def\xdd{\ddot{x}} \def\xd{\dot{x}} \def\ydd{\ddot{y}} \def\yd{\dot{y}} \def\zdd{\ddot{z}} \def\zd{\dot{z}} \bfn_i:

(ficni) > 0,andfit2  μi(ficni),\def\LdG{\dot{L}_G} \def\Ld{\dot{L}} \def\bfA{\boldsymbol{A}} \def\bfB{\boldsymbol{B}} \def\bfC{\boldsymbol{C}} \def\bfD{\boldsymbol{D}} \def\bfE{\boldsymbol{E}} \def\bfF{\boldsymbol{F}} \def\bfG{\boldsymbol{G}} \def\bfH{\boldsymbol{H}} \def\bfI{\boldsymbol{I}} \def\bfJ{\boldsymbol{J}} \def\bfK{\boldsymbol{K}} \def\bfL{\boldsymbol{L}} \def\bfM{\boldsymbol{M}} \def\bfN{\boldsymbol{N}} \def\bfO{\boldsymbol{O}} \def\bfP{\boldsymbol{P}} \def\bfQ{\boldsymbol{Q}} \def\bfR{\boldsymbol{R}} \def\bfS{\boldsymbol{S}} \def\bfT{\boldsymbol{T}} \def\bfU{\boldsymbol{U}} \def\bfV{\boldsymbol{V}} \def\bfW{\boldsymbol{W}} \def\bfX{\boldsymbol{X}} \def\bfY{\boldsymbol{Y}} \def\bfZ{\boldsymbol{Z}} \def\bfalpha{\boldsymbol{\alpha}} \def\bfa{\boldsymbol{a}} \def\bfbeta{\boldsymbol{\beta}} \def\bfb{\boldsymbol{b}} \def\bfcd{\dot{\bfc}} \def\bfchi{\boldsymbol{\chi}} \def\bfc{\boldsymbol{c}} \def\bfd{\boldsymbol{d}} \def\bfe{\boldsymbol{e}} \def\bff{\boldsymbol{f}} \def\bfgamma{\boldsymbol{\gamma}} \def\bfg{\boldsymbol{g}} \def\bfh{\boldsymbol{h}} \def\bfi{\boldsymbol{i}} \def\bfj{\boldsymbol{j}} \def\bfk{\boldsymbol{k}} \def\bflambda{\boldsymbol{\lambda}} \def\bfl{\boldsymbol{l}} \def\bfm{\boldsymbol{m}} \def\bfn{\boldsymbol{n}} \def\bfomega{\boldsymbol{\omega}} \def\bfone{\boldsymbol{1}} \def\bfo{\boldsymbol{o}} \def\bfpdd{\ddot{\bfp}} \def\bfpd{\dot{\bfp}} \def\bfphi{\boldsymbol{\phi}} \def\bfp{\boldsymbol{p}} \def\bfq{\boldsymbol{q}} \def\bfr{\boldsymbol{r}} \def\bfsigma{\boldsymbol{\sigma}} \def\bfs{\boldsymbol{s}} \def\bftau{\boldsymbol{\tau}} \def\bft{\boldsymbol{t}} \def\bfu{\boldsymbol{u}} \def\bfv{\boldsymbol{v}} \def\bfw{\boldsymbol{w}} \def\bfxi{\boldsymbol{\xi}} \def\bfx{\boldsymbol{x}} \def\bfy{\boldsymbol{y}} \def\bfzero{\boldsymbol{0}} \def\bfz{\boldsymbol{z}} \def\calA{\mathcal{A}} \def\calB{\mathcal{B}} \def\calC{\mathcal{C}} \def\calD{\mathcal{D}} \def\calE{\mathcal{E}} \def\calF{\mathcal{F}} \def\calG{\mathcal{G}} \def\calH{\mathcal{H}} \def\calI{\mathcal{I}} \def\calJ{\mathcal{J}} \def\calK{\mathcal{K}} \def\calL{\mathcal{L}} \def\calM{\mathcal{M}} \def\calN{\mathcal{N}} \def\calO{\mathcal{O}} \def\calP{\mathcal{P}} \def\calQ{\mathcal{Q}} \def\calR{\mathcal{R}} \def\calS{\mathcal{S}} \def\calT{\mathcal{T}} \def\calU{\mathcal{U}} \def\calV{\mathcal{V}} \def\calW{\mathcal{W}} \def\calX{\mathcal{X}} \def\calY{\mathcal{Y}} \def\calZ{\mathcal{Z}} \def\d#1{{\rm d}{#1}} \def\defeq{\stackrel{\mathrm{def}}{=}} \def\dim{\rm dim} \def\p{\boldsymbol{p}} \def\qdd{\ddot{\bfq}} \def\qd{\dot{\bfq}} \def\q{\boldsymbol{q}} \def\xdd{\ddot{x}} \def\xd{\dot{x}} \def\ydd{\ddot{y}} \def\yd{\dot{y}} \def\zdd{\ddot{z}} \def\zd{\dot{z}} (\bff^c_i \cdot \bfn_i) \ > \ 0, \quad \textrm{and} \quad \left\| \bff^t_i \right\|_2 \ \leq \ \mu_i (\bff^{c}_i \cdot \bfn_i),

where μi\def\LdG{\dot{L}_G} \def\Ld{\dot{L}} \def\bfA{\boldsymbol{A}} \def\bfB{\boldsymbol{B}} \def\bfC{\boldsymbol{C}} \def\bfD{\boldsymbol{D}} \def\bfE{\boldsymbol{E}} \def\bfF{\boldsymbol{F}} \def\bfG{\boldsymbol{G}} \def\bfH{\boldsymbol{H}} \def\bfI{\boldsymbol{I}} \def\bfJ{\boldsymbol{J}} \def\bfK{\boldsymbol{K}} \def\bfL{\boldsymbol{L}} \def\bfM{\boldsymbol{M}} \def\bfN{\boldsymbol{N}} \def\bfO{\boldsymbol{O}} \def\bfP{\boldsymbol{P}} \def\bfQ{\boldsymbol{Q}} \def\bfR{\boldsymbol{R}} \def\bfS{\boldsymbol{S}} \def\bfT{\boldsymbol{T}} \def\bfU{\boldsymbol{U}} \def\bfV{\boldsymbol{V}} \def\bfW{\boldsymbol{W}} \def\bfX{\boldsymbol{X}} \def\bfY{\boldsymbol{Y}} \def\bfZ{\boldsymbol{Z}} \def\bfalpha{\boldsymbol{\alpha}} \def\bfa{\boldsymbol{a}} \def\bfbeta{\boldsymbol{\beta}} \def\bfb{\boldsymbol{b}} \def\bfcd{\dot{\bfc}} \def\bfchi{\boldsymbol{\chi}} \def\bfc{\boldsymbol{c}} \def\bfd{\boldsymbol{d}} \def\bfe{\boldsymbol{e}} \def\bff{\boldsymbol{f}} \def\bfgamma{\boldsymbol{\gamma}} \def\bfg{\boldsymbol{g}} \def\bfh{\boldsymbol{h}} \def\bfi{\boldsymbol{i}} \def\bfj{\boldsymbol{j}} \def\bfk{\boldsymbol{k}} \def\bflambda{\boldsymbol{\lambda}} \def\bfl{\boldsymbol{l}} \def\bfm{\boldsymbol{m}} \def\bfn{\boldsymbol{n}} \def\bfomega{\boldsymbol{\omega}} \def\bfone{\boldsymbol{1}} \def\bfo{\boldsymbol{o}} \def\bfpdd{\ddot{\bfp}} \def\bfpd{\dot{\bfp}} \def\bfphi{\boldsymbol{\phi}} \def\bfp{\boldsymbol{p}} \def\bfq{\boldsymbol{q}} \def\bfr{\boldsymbol{r}} \def\bfsigma{\boldsymbol{\sigma}} \def\bfs{\boldsymbol{s}} \def\bftau{\boldsymbol{\tau}} \def\bft{\boldsymbol{t}} \def\bfu{\boldsymbol{u}} \def\bfv{\boldsymbol{v}} \def\bfw{\boldsymbol{w}} \def\bfxi{\boldsymbol{\xi}} \def\bfx{\boldsymbol{x}} \def\bfy{\boldsymbol{y}} \def\bfzero{\boldsymbol{0}} \def\bfz{\boldsymbol{z}} \def\calA{\mathcal{A}} \def\calB{\mathcal{B}} \def\calC{\mathcal{C}} \def\calD{\mathcal{D}} \def\calE{\mathcal{E}} \def\calF{\mathcal{F}} \def\calG{\mathcal{G}} \def\calH{\mathcal{H}} \def\calI{\mathcal{I}} \def\calJ{\mathcal{J}} \def\calK{\mathcal{K}} \def\calL{\mathcal{L}} \def\calM{\mathcal{M}} \def\calN{\mathcal{N}} \def\calO{\mathcal{O}} \def\calP{\mathcal{P}} \def\calQ{\mathcal{Q}} \def\calR{\mathcal{R}} \def\calS{\mathcal{S}} \def\calT{\mathcal{T}} \def\calU{\mathcal{U}} \def\calV{\mathcal{V}} \def\calW{\mathcal{W}} \def\calX{\mathcal{X}} \def\calY{\mathcal{Y}} \def\calZ{\mathcal{Z}} \def\d#1{{\rm d}{#1}} \def\defeq{\stackrel{\mathrm{def}}{=}} \def\dim{\rm dim} \def\p{\boldsymbol{p}} \def\qdd{\ddot{\bfq}} \def\qd{\dot{\bfq}} \def\q{\boldsymbol{q}} \def\xdd{\ddot{x}} \def\xd{\dot{x}} \def\ydd{\ddot{y}} \def\yd{\dot{y}} \def\zdd{\ddot{z}} \def\zd{\dot{z}} \mu_i is the static friction coefficient at contact Ci\def\LdG{\dot{L}_G} \def\Ld{\dot{L}} \def\bfA{\boldsymbol{A}} \def\bfB{\boldsymbol{B}} \def\bfC{\boldsymbol{C}} \def\bfD{\boldsymbol{D}} \def\bfE{\boldsymbol{E}} \def\bfF{\boldsymbol{F}} \def\bfG{\boldsymbol{G}} \def\bfH{\boldsymbol{H}} \def\bfI{\boldsymbol{I}} \def\bfJ{\boldsymbol{J}} \def\bfK{\boldsymbol{K}} \def\bfL{\boldsymbol{L}} \def\bfM{\boldsymbol{M}} \def\bfN{\boldsymbol{N}} \def\bfO{\boldsymbol{O}} \def\bfP{\boldsymbol{P}} \def\bfQ{\boldsymbol{Q}} \def\bfR{\boldsymbol{R}} \def\bfS{\boldsymbol{S}} \def\bfT{\boldsymbol{T}} \def\bfU{\boldsymbol{U}} \def\bfV{\boldsymbol{V}} \def\bfW{\boldsymbol{W}} \def\bfX{\boldsymbol{X}} \def\bfY{\boldsymbol{Y}} \def\bfZ{\boldsymbol{Z}} \def\bfalpha{\boldsymbol{\alpha}} \def\bfa{\boldsymbol{a}} \def\bfbeta{\boldsymbol{\beta}} \def\bfb{\boldsymbol{b}} \def\bfcd{\dot{\bfc}} \def\bfchi{\boldsymbol{\chi}} \def\bfc{\boldsymbol{c}} \def\bfd{\boldsymbol{d}} \def\bfe{\boldsymbol{e}} \def\bff{\boldsymbol{f}} \def\bfgamma{\boldsymbol{\gamma}} \def\bfg{\boldsymbol{g}} \def\bfh{\boldsymbol{h}} \def\bfi{\boldsymbol{i}} \def\bfj{\boldsymbol{j}} \def\bfk{\boldsymbol{k}} \def\bflambda{\boldsymbol{\lambda}} \def\bfl{\boldsymbol{l}} \def\bfm{\boldsymbol{m}} \def\bfn{\boldsymbol{n}} \def\bfomega{\boldsymbol{\omega}} \def\bfone{\boldsymbol{1}} \def\bfo{\boldsymbol{o}} \def\bfpdd{\ddot{\bfp}} \def\bfpd{\dot{\bfp}} \def\bfphi{\boldsymbol{\phi}} \def\bfp{\boldsymbol{p}} \def\bfq{\boldsymbol{q}} \def\bfr{\boldsymbol{r}} \def\bfsigma{\boldsymbol{\sigma}} \def\bfs{\boldsymbol{s}} \def\bftau{\boldsymbol{\tau}} \def\bft{\boldsymbol{t}} \def\bfu{\boldsymbol{u}} \def\bfv{\boldsymbol{v}} \def\bfw{\boldsymbol{w}} \def\bfxi{\boldsymbol{\xi}} \def\bfx{\boldsymbol{x}} \def\bfy{\boldsymbol{y}} \def\bfzero{\boldsymbol{0}} \def\bfz{\boldsymbol{z}} \def\calA{\mathcal{A}} \def\calB{\mathcal{B}} \def\calC{\mathcal{C}} \def\calD{\mathcal{D}} \def\calE{\mathcal{E}} \def\calF{\mathcal{F}} \def\calG{\mathcal{G}} \def\calH{\mathcal{H}} \def\calI{\mathcal{I}} \def\calJ{\mathcal{J}} \def\calK{\mathcal{K}} \def\calL{\mathcal{L}} \def\calM{\mathcal{M}} \def\calN{\mathcal{N}} \def\calO{\mathcal{O}} \def\calP{\mathcal{P}} \def\calQ{\mathcal{Q}} \def\calR{\mathcal{R}} \def\calS{\mathcal{S}} \def\calT{\mathcal{T}} \def\calU{\mathcal{U}} \def\calV{\mathcal{V}} \def\calW{\mathcal{W}} \def\calX{\mathcal{X}} \def\calY{\mathcal{Y}} \def\calZ{\mathcal{Z}} \def\d#1{{\rm d}{#1}} \def\defeq{\stackrel{\mathrm{def}}{=}} \def\dim{\rm dim} \def\p{\boldsymbol{p}} \def\qdd{\ddot{\bfq}} \def\qd{\dot{\bfq}} \def\q{\boldsymbol{q}} \def\xdd{\ddot{x}} \def\xd{\dot{x}} \def\ydd{\ddot{y}} \def\yd{\dot{y}} \def\zdd{\ddot{z}} \def\zd{\dot{z}} C_i. The Euclidean norm 2\def\LdG{\dot{L}_G} \def\Ld{\dot{L}} \def\bfA{\boldsymbol{A}} \def\bfB{\boldsymbol{B}} \def\bfC{\boldsymbol{C}} \def\bfD{\boldsymbol{D}} \def\bfE{\boldsymbol{E}} \def\bfF{\boldsymbol{F}} \def\bfG{\boldsymbol{G}} \def\bfH{\boldsymbol{H}} \def\bfI{\boldsymbol{I}} \def\bfJ{\boldsymbol{J}} \def\bfK{\boldsymbol{K}} \def\bfL{\boldsymbol{L}} \def\bfM{\boldsymbol{M}} \def\bfN{\boldsymbol{N}} \def\bfO{\boldsymbol{O}} \def\bfP{\boldsymbol{P}} \def\bfQ{\boldsymbol{Q}} \def\bfR{\boldsymbol{R}} \def\bfS{\boldsymbol{S}} \def\bfT{\boldsymbol{T}} \def\bfU{\boldsymbol{U}} \def\bfV{\boldsymbol{V}} \def\bfW{\boldsymbol{W}} \def\bfX{\boldsymbol{X}} \def\bfY{\boldsymbol{Y}} \def\bfZ{\boldsymbol{Z}} \def\bfalpha{\boldsymbol{\alpha}} \def\bfa{\boldsymbol{a}} \def\bfbeta{\boldsymbol{\beta}} \def\bfb{\boldsymbol{b}} \def\bfcd{\dot{\bfc}} \def\bfchi{\boldsymbol{\chi}} \def\bfc{\boldsymbol{c}} \def\bfd{\boldsymbol{d}} \def\bfe{\boldsymbol{e}} \def\bff{\boldsymbol{f}} \def\bfgamma{\boldsymbol{\gamma}} \def\bfg{\boldsymbol{g}} \def\bfh{\boldsymbol{h}} \def\bfi{\boldsymbol{i}} \def\bfj{\boldsymbol{j}} \def\bfk{\boldsymbol{k}} \def\bflambda{\boldsymbol{\lambda}} \def\bfl{\boldsymbol{l}} \def\bfm{\boldsymbol{m}} \def\bfn{\boldsymbol{n}} \def\bfomega{\boldsymbol{\omega}} \def\bfone{\boldsymbol{1}} \def\bfo{\boldsymbol{o}} \def\bfpdd{\ddot{\bfp}} \def\bfpd{\dot{\bfp}} \def\bfphi{\boldsymbol{\phi}} \def\bfp{\boldsymbol{p}} \def\bfq{\boldsymbol{q}} \def\bfr{\boldsymbol{r}} \def\bfsigma{\boldsymbol{\sigma}} \def\bfs{\boldsymbol{s}} \def\bftau{\boldsymbol{\tau}} \def\bft{\boldsymbol{t}} \def\bfu{\boldsymbol{u}} \def\bfv{\boldsymbol{v}} \def\bfw{\boldsymbol{w}} \def\bfxi{\boldsymbol{\xi}} \def\bfx{\boldsymbol{x}} \def\bfy{\boldsymbol{y}} \def\bfzero{\boldsymbol{0}} \def\bfz{\boldsymbol{z}} \def\calA{\mathcal{A}} \def\calB{\mathcal{B}} \def\calC{\mathcal{C}} \def\calD{\mathcal{D}} \def\calE{\mathcal{E}} \def\calF{\mathcal{F}} \def\calG{\mathcal{G}} \def\calH{\mathcal{H}} \def\calI{\mathcal{I}} \def\calJ{\mathcal{J}} \def\calK{\mathcal{K}} \def\calL{\mathcal{L}} \def\calM{\mathcal{M}} \def\calN{\mathcal{N}} \def\calO{\mathcal{O}} \def\calP{\mathcal{P}} \def\calQ{\mathcal{Q}} \def\calR{\mathcal{R}} \def\calS{\mathcal{S}} \def\calT{\mathcal{T}} \def\calU{\mathcal{U}} \def\calV{\mathcal{V}} \def\calW{\mathcal{W}} \def\calX{\mathcal{X}} \def\calY{\mathcal{Y}} \def\calZ{\mathcal{Z}} \def\d#1{{\rm d}{#1}} \def\defeq{\stackrel{\mathrm{def}}{=}} \def\dim{\rm dim} \def\p{\boldsymbol{p}} \def\qdd{\ddot{\bfq}} \def\qd{\dot{\bfq}} \def\q{\boldsymbol{q}} \def\xdd{\ddot{x}} \def\xd{\dot{x}} \def\ydd{\ddot{y}} \def\yd{\dot{y}} \def\zdd{\ddot{z}} \def\zd{\dot{z}} \| \cdot \|_2 in this definition represents friction cones with circular sections, which models the isotropy of friction. Although more realistic, this model presents some computational challenges down the control pipeline. A common practice is to consider its linear approximation:

Linearized friction cones

A point contact remains in the fixed contact mode while its contact force fic\def\LdG{\dot{L}_G} \def\Ld{\dot{L}} \def\bfA{\boldsymbol{A}} \def\bfB{\boldsymbol{B}} \def\bfC{\boldsymbol{C}} \def\bfD{\boldsymbol{D}} \def\bfE{\boldsymbol{E}} \def\bfF{\boldsymbol{F}} \def\bfG{\boldsymbol{G}} \def\bfH{\boldsymbol{H}} \def\bfI{\boldsymbol{I}} \def\bfJ{\boldsymbol{J}} \def\bfK{\boldsymbol{K}} \def\bfL{\boldsymbol{L}} \def\bfM{\boldsymbol{M}} \def\bfN{\boldsymbol{N}} \def\bfO{\boldsymbol{O}} \def\bfP{\boldsymbol{P}} \def\bfQ{\boldsymbol{Q}} \def\bfR{\boldsymbol{R}} \def\bfS{\boldsymbol{S}} \def\bfT{\boldsymbol{T}} \def\bfU{\boldsymbol{U}} \def\bfV{\boldsymbol{V}} \def\bfW{\boldsymbol{W}} \def\bfX{\boldsymbol{X}} \def\bfY{\boldsymbol{Y}} \def\bfZ{\boldsymbol{Z}} \def\bfalpha{\boldsymbol{\alpha}} \def\bfa{\boldsymbol{a}} \def\bfbeta{\boldsymbol{\beta}} \def\bfb{\boldsymbol{b}} \def\bfcd{\dot{\bfc}} \def\bfchi{\boldsymbol{\chi}} \def\bfc{\boldsymbol{c}} \def\bfd{\boldsymbol{d}} \def\bfe{\boldsymbol{e}} \def\bff{\boldsymbol{f}} \def\bfgamma{\boldsymbol{\gamma}} \def\bfg{\boldsymbol{g}} \def\bfh{\boldsymbol{h}} \def\bfi{\boldsymbol{i}} \def\bfj{\boldsymbol{j}} \def\bfk{\boldsymbol{k}} \def\bflambda{\boldsymbol{\lambda}} \def\bfl{\boldsymbol{l}} \def\bfm{\boldsymbol{m}} \def\bfn{\boldsymbol{n}} \def\bfomega{\boldsymbol{\omega}} \def\bfone{\boldsymbol{1}} \def\bfo{\boldsymbol{o}} \def\bfpdd{\ddot{\bfp}} \def\bfpd{\dot{\bfp}} \def\bfphi{\boldsymbol{\phi}} \def\bfp{\boldsymbol{p}} \def\bfq{\boldsymbol{q}} \def\bfr{\boldsymbol{r}} \def\bfsigma{\boldsymbol{\sigma}} \def\bfs{\boldsymbol{s}} \def\bftau{\boldsymbol{\tau}} \def\bft{\boldsymbol{t}} \def\bfu{\boldsymbol{u}} \def\bfv{\boldsymbol{v}} \def\bfw{\boldsymbol{w}} \def\bfxi{\boldsymbol{\xi}} \def\bfx{\boldsymbol{x}} \def\bfy{\boldsymbol{y}} \def\bfzero{\boldsymbol{0}} \def\bfz{\boldsymbol{z}} \def\calA{\mathcal{A}} \def\calB{\mathcal{B}} \def\calC{\mathcal{C}} \def\calD{\mathcal{D}} \def\calE{\mathcal{E}} \def\calF{\mathcal{F}} \def\calG{\mathcal{G}} \def\calH{\mathcal{H}} \def\calI{\mathcal{I}} \def\calJ{\mathcal{J}} \def\calK{\mathcal{K}} \def\calL{\mathcal{L}} \def\calM{\mathcal{M}} \def\calN{\mathcal{N}} \def\calO{\mathcal{O}} \def\calP{\mathcal{P}} \def\calQ{\mathcal{Q}} \def\calR{\mathcal{R}} \def\calS{\mathcal{S}} \def\calT{\mathcal{T}} \def\calU{\mathcal{U}} \def\calV{\mathcal{V}} \def\calW{\mathcal{W}} \def\calX{\mathcal{X}} \def\calY{\mathcal{Y}} \def\calZ{\mathcal{Z}} \def\d#1{{\rm d}{#1}} \def\defeq{\stackrel{\mathrm{def}}{=}} \def\dim{\rm dim} \def\p{\boldsymbol{p}} \def\qdd{\ddot{\bfq}} \def\qd{\dot{\bfq}} \def\q{\boldsymbol{q}} \def\xdd{\ddot{x}} \def\xd{\dot{x}} \def\ydd{\ddot{y}} \def\yd{\dot{y}} \def\zdd{\ddot{z}} \def\zd{\dot{z}} \bff^c_i lies inside the linearized friction cone directed by ni\def\LdG{\dot{L}_G} \def\Ld{\dot{L}} \def\bfA{\boldsymbol{A}} \def\bfB{\boldsymbol{B}} \def\bfC{\boldsymbol{C}} \def\bfD{\boldsymbol{D}} \def\bfE{\boldsymbol{E}} \def\bfF{\boldsymbol{F}} \def\bfG{\boldsymbol{G}} \def\bfH{\boldsymbol{H}} \def\bfI{\boldsymbol{I}} \def\bfJ{\boldsymbol{J}} \def\bfK{\boldsymbol{K}} \def\bfL{\boldsymbol{L}} \def\bfM{\boldsymbol{M}} \def\bfN{\boldsymbol{N}} \def\bfO{\boldsymbol{O}} \def\bfP{\boldsymbol{P}} \def\bfQ{\boldsymbol{Q}} \def\bfR{\boldsymbol{R}} \def\bfS{\boldsymbol{S}} \def\bfT{\boldsymbol{T}} \def\bfU{\boldsymbol{U}} \def\bfV{\boldsymbol{V}} \def\bfW{\boldsymbol{W}} \def\bfX{\boldsymbol{X}} \def\bfY{\boldsymbol{Y}} \def\bfZ{\boldsymbol{Z}} \def\bfalpha{\boldsymbol{\alpha}} \def\bfa{\boldsymbol{a}} \def\bfbeta{\boldsymbol{\beta}} \def\bfb{\boldsymbol{b}} \def\bfcd{\dot{\bfc}} \def\bfchi{\boldsymbol{\chi}} \def\bfc{\boldsymbol{c}} \def\bfd{\boldsymbol{d}} \def\bfe{\boldsymbol{e}} \def\bff{\boldsymbol{f}} \def\bfgamma{\boldsymbol{\gamma}} \def\bfg{\boldsymbol{g}} \def\bfh{\boldsymbol{h}} \def\bfi{\boldsymbol{i}} \def\bfj{\boldsymbol{j}} \def\bfk{\boldsymbol{k}} \def\bflambda{\boldsymbol{\lambda}} \def\bfl{\boldsymbol{l}} \def\bfm{\boldsymbol{m}} \def\bfn{\boldsymbol{n}} \def\bfomega{\boldsymbol{\omega}} \def\bfone{\boldsymbol{1}} \def\bfo{\boldsymbol{o}} \def\bfpdd{\ddot{\bfp}} \def\bfpd{\dot{\bfp}} \def\bfphi{\boldsymbol{\phi}} \def\bfp{\boldsymbol{p}} \def\bfq{\boldsymbol{q}} \def\bfr{\boldsymbol{r}} \def\bfsigma{\boldsymbol{\sigma}} \def\bfs{\boldsymbol{s}} \def\bftau{\boldsymbol{\tau}} \def\bft{\boldsymbol{t}} \def\bfu{\boldsymbol{u}} \def\bfv{\boldsymbol{v}} \def\bfw{\boldsymbol{w}} \def\bfxi{\boldsymbol{\xi}} \def\bfx{\boldsymbol{x}} \def\bfy{\boldsymbol{y}} \def\bfzero{\boldsymbol{0}} \def\bfz{\boldsymbol{z}} \def\calA{\mathcal{A}} \def\calB{\mathcal{B}} \def\calC{\mathcal{C}} \def\calD{\mathcal{D}} \def\calE{\mathcal{E}} \def\calF{\mathcal{F}} \def\calG{\mathcal{G}} \def\calH{\mathcal{H}} \def\calI{\mathcal{I}} \def\calJ{\mathcal{J}} \def\calK{\mathcal{K}} \def\calL{\mathcal{L}} \def\calM{\mathcal{M}} \def\calN{\mathcal{N}} \def\calO{\mathcal{O}} \def\calP{\mathcal{P}} \def\calQ{\mathcal{Q}} \def\calR{\mathcal{R}} \def\calS{\mathcal{S}} \def\calT{\mathcal{T}} \def\calU{\mathcal{U}} \def\calV{\mathcal{V}} \def\calW{\mathcal{W}} \def\calX{\mathcal{X}} \def\calY{\mathcal{Y}} \def\calZ{\mathcal{Z}} \def\d#1{{\rm d}{#1}} \def\defeq{\stackrel{\mathrm{def}}{=}} \def\dim{\rm dim} \def\p{\boldsymbol{p}} \def\qdd{\ddot{\bfq}} \def\qd{\dot{\bfq}} \def\q{\boldsymbol{q}} \def\xdd{\ddot{x}} \def\xd{\dot{x}} \def\ydd{\ddot{y}} \def\yd{\dot{y}} \def\zdd{\ddot{z}} \def\zd{\dot{z}} \bfn_i:

ficni > 0,andfitμ~i(ficni)  Pn,\def\LdG{\dot{L}_G} \def\Ld{\dot{L}} \def\bfA{\boldsymbol{A}} \def\bfB{\boldsymbol{B}} \def\bfC{\boldsymbol{C}} \def\bfD{\boldsymbol{D}} \def\bfE{\boldsymbol{E}} \def\bfF{\boldsymbol{F}} \def\bfG{\boldsymbol{G}} \def\bfH{\boldsymbol{H}} \def\bfI{\boldsymbol{I}} \def\bfJ{\boldsymbol{J}} \def\bfK{\boldsymbol{K}} \def\bfL{\boldsymbol{L}} \def\bfM{\boldsymbol{M}} \def\bfN{\boldsymbol{N}} \def\bfO{\boldsymbol{O}} \def\bfP{\boldsymbol{P}} \def\bfQ{\boldsymbol{Q}} \def\bfR{\boldsymbol{R}} \def\bfS{\boldsymbol{S}} \def\bfT{\boldsymbol{T}} \def\bfU{\boldsymbol{U}} \def\bfV{\boldsymbol{V}} \def\bfW{\boldsymbol{W}} \def\bfX{\boldsymbol{X}} \def\bfY{\boldsymbol{Y}} \def\bfZ{\boldsymbol{Z}} \def\bfalpha{\boldsymbol{\alpha}} \def\bfa{\boldsymbol{a}} \def\bfbeta{\boldsymbol{\beta}} \def\bfb{\boldsymbol{b}} \def\bfcd{\dot{\bfc}} \def\bfchi{\boldsymbol{\chi}} \def\bfc{\boldsymbol{c}} \def\bfd{\boldsymbol{d}} \def\bfe{\boldsymbol{e}} \def\bff{\boldsymbol{f}} \def\bfgamma{\boldsymbol{\gamma}} \def\bfg{\boldsymbol{g}} \def\bfh{\boldsymbol{h}} \def\bfi{\boldsymbol{i}} \def\bfj{\boldsymbol{j}} \def\bfk{\boldsymbol{k}} \def\bflambda{\boldsymbol{\lambda}} \def\bfl{\boldsymbol{l}} \def\bfm{\boldsymbol{m}} \def\bfn{\boldsymbol{n}} \def\bfomega{\boldsymbol{\omega}} \def\bfone{\boldsymbol{1}} \def\bfo{\boldsymbol{o}} \def\bfpdd{\ddot{\bfp}} \def\bfpd{\dot{\bfp}} \def\bfphi{\boldsymbol{\phi}} \def\bfp{\boldsymbol{p}} \def\bfq{\boldsymbol{q}} \def\bfr{\boldsymbol{r}} \def\bfsigma{\boldsymbol{\sigma}} \def\bfs{\boldsymbol{s}} \def\bftau{\boldsymbol{\tau}} \def\bft{\boldsymbol{t}} \def\bfu{\boldsymbol{u}} \def\bfv{\boldsymbol{v}} \def\bfw{\boldsymbol{w}} \def\bfxi{\boldsymbol{\xi}} \def\bfx{\boldsymbol{x}} \def\bfy{\boldsymbol{y}} \def\bfzero{\boldsymbol{0}} \def\bfz{\boldsymbol{z}} \def\calA{\mathcal{A}} \def\calB{\mathcal{B}} \def\calC{\mathcal{C}} \def\calD{\mathcal{D}} \def\calE{\mathcal{E}} \def\calF{\mathcal{F}} \def\calG{\mathcal{G}} \def\calH{\mathcal{H}} \def\calI{\mathcal{I}} \def\calJ{\mathcal{J}} \def\calK{\mathcal{K}} \def\calL{\mathcal{L}} \def\calM{\mathcal{M}} \def\calN{\mathcal{N}} \def\calO{\mathcal{O}} \def\calP{\mathcal{P}} \def\calQ{\mathcal{Q}} \def\calR{\mathcal{R}} \def\calS{\mathcal{S}} \def\calT{\mathcal{T}} \def\calU{\mathcal{U}} \def\calV{\mathcal{V}} \def\calW{\mathcal{W}} \def\calX{\mathcal{X}} \def\calY{\mathcal{Y}} \def\calZ{\mathcal{Z}} \def\d#1{{\rm d}{#1}} \def\defeq{\stackrel{\mathrm{def}}{=}} \def\dim{\rm dim} \def\p{\boldsymbol{p}} \def\qdd{\ddot{\bfq}} \def\qd{\dot{\bfq}} \def\q{\boldsymbol{q}} \def\xdd{\ddot{x}} \def\xd{\dot{x}} \def\ydd{\ddot{y}} \def\yd{\dot{y}} \def\zdd{\ddot{z}} \def\zd{\dot{z}} \bff^c_i \cdot \bfn_i \ > \ 0, \quad \textrm{and} \quad \frac{\bff^t_i}{\tilde{\mu}_i (\bff^{c}_i \cdot \bfn_i)} \ \in \ \calP_n,

where Pn\def\LdG{\dot{L}_G} \def\Ld{\dot{L}} \def\bfA{\boldsymbol{A}} \def\bfB{\boldsymbol{B}} \def\bfC{\boldsymbol{C}} \def\bfD{\boldsymbol{D}} \def\bfE{\boldsymbol{E}} \def\bfF{\boldsymbol{F}} \def\bfG{\boldsymbol{G}} \def\bfH{\boldsymbol{H}} \def\bfI{\boldsymbol{I}} \def\bfJ{\boldsymbol{J}} \def\bfK{\boldsymbol{K}} \def\bfL{\boldsymbol{L}} \def\bfM{\boldsymbol{M}} \def\bfN{\boldsymbol{N}} \def\bfO{\boldsymbol{O}} \def\bfP{\boldsymbol{P}} \def\bfQ{\boldsymbol{Q}} \def\bfR{\boldsymbol{R}} \def\bfS{\boldsymbol{S}} \def\bfT{\boldsymbol{T}} \def\bfU{\boldsymbol{U}} \def\bfV{\boldsymbol{V}} \def\bfW{\boldsymbol{W}} \def\bfX{\boldsymbol{X}} \def\bfY{\boldsymbol{Y}} \def\bfZ{\boldsymbol{Z}} \def\bfalpha{\boldsymbol{\alpha}} \def\bfa{\boldsymbol{a}} \def\bfbeta{\boldsymbol{\beta}} \def\bfb{\boldsymbol{b}} \def\bfcd{\dot{\bfc}} \def\bfchi{\boldsymbol{\chi}} \def\bfc{\boldsymbol{c}} \def\bfd{\boldsymbol{d}} \def\bfe{\boldsymbol{e}} \def\bff{\boldsymbol{f}} \def\bfgamma{\boldsymbol{\gamma}} \def\bfg{\boldsymbol{g}} \def\bfh{\boldsymbol{h}} \def\bfi{\boldsymbol{i}} \def\bfj{\boldsymbol{j}} \def\bfk{\boldsymbol{k}} \def\bflambda{\boldsymbol{\lambda}} \def\bfl{\boldsymbol{l}} \def\bfm{\boldsymbol{m}} \def\bfn{\boldsymbol{n}} \def\bfomega{\boldsymbol{\omega}} \def\bfone{\boldsymbol{1}} \def\bfo{\boldsymbol{o}} \def\bfpdd{\ddot{\bfp}} \def\bfpd{\dot{\bfp}} \def\bfphi{\boldsymbol{\phi}} \def\bfp{\boldsymbol{p}} \def\bfq{\boldsymbol{q}} \def\bfr{\boldsymbol{r}} \def\bfsigma{\boldsymbol{\sigma}} \def\bfs{\boldsymbol{s}} \def\bftau{\boldsymbol{\tau}} \def\bft{\boldsymbol{t}} \def\bfu{\boldsymbol{u}} \def\bfv{\boldsymbol{v}} \def\bfw{\boldsymbol{w}} \def\bfxi{\boldsymbol{\xi}} \def\bfx{\boldsymbol{x}} \def\bfy{\boldsymbol{y}} \def\bfzero{\boldsymbol{0}} \def\bfz{\boldsymbol{z}} \def\calA{\mathcal{A}} \def\calB{\mathcal{B}} \def\calC{\mathcal{C}} \def\calD{\mathcal{D}} \def\calE{\mathcal{E}} \def\calF{\mathcal{F}} \def\calG{\mathcal{G}} \def\calH{\mathcal{H}} \def\calI{\mathcal{I}} \def\calJ{\mathcal{J}} \def\calK{\mathcal{K}} \def\calL{\mathcal{L}} \def\calM{\mathcal{M}} \def\calN{\mathcal{N}} \def\calO{\mathcal{O}} \def\calP{\mathcal{P}} \def\calQ{\mathcal{Q}} \def\calR{\mathcal{R}} \def\calS{\mathcal{S}} \def\calT{\mathcal{T}} \def\calU{\mathcal{U}} \def\calV{\mathcal{V}} \def\calW{\mathcal{W}} \def\calX{\mathcal{X}} \def\calY{\mathcal{Y}} \def\calZ{\mathcal{Z}} \def\d#1{{\rm d}{#1}} \def\defeq{\stackrel{\mathrm{def}}{=}} \def\dim{\rm dim} \def\p{\boldsymbol{p}} \def\qdd{\ddot{\bfq}} \def\qd{\dot{\bfq}} \def\q{\boldsymbol{q}} \def\xdd{\ddot{x}} \def\xd{\dot{x}} \def\ydd{\ddot{y}} \def\yd{\dot{y}} \def\zdd{\ddot{z}} \def\zd{\dot{z}} \calP_n is the regular n\def\LdG{\dot{L}_G} \def\Ld{\dot{L}} \def\bfA{\boldsymbol{A}} \def\bfB{\boldsymbol{B}} \def\bfC{\boldsymbol{C}} \def\bfD{\boldsymbol{D}} \def\bfE{\boldsymbol{E}} \def\bfF{\boldsymbol{F}} \def\bfG{\boldsymbol{G}} \def\bfH{\boldsymbol{H}} \def\bfI{\boldsymbol{I}} \def\bfJ{\boldsymbol{J}} \def\bfK{\boldsymbol{K}} \def\bfL{\boldsymbol{L}} \def\bfM{\boldsymbol{M}} \def\bfN{\boldsymbol{N}} \def\bfO{\boldsymbol{O}} \def\bfP{\boldsymbol{P}} \def\bfQ{\boldsymbol{Q}} \def\bfR{\boldsymbol{R}} \def\bfS{\boldsymbol{S}} \def\bfT{\boldsymbol{T}} \def\bfU{\boldsymbol{U}} \def\bfV{\boldsymbol{V}} \def\bfW{\boldsymbol{W}} \def\bfX{\boldsymbol{X}} \def\bfY{\boldsymbol{Y}} \def\bfZ{\boldsymbol{Z}} \def\bfalpha{\boldsymbol{\alpha}} \def\bfa{\boldsymbol{a}} \def\bfbeta{\boldsymbol{\beta}} \def\bfb{\boldsymbol{b}} \def\bfcd{\dot{\bfc}} \def\bfchi{\boldsymbol{\chi}} \def\bfc{\boldsymbol{c}} \def\bfd{\boldsymbol{d}} \def\bfe{\boldsymbol{e}} \def\bff{\boldsymbol{f}} \def\bfgamma{\boldsymbol{\gamma}} \def\bfg{\boldsymbol{g}} \def\bfh{\boldsymbol{h}} \def\bfi{\boldsymbol{i}} \def\bfj{\boldsymbol{j}} \def\bfk{\boldsymbol{k}} \def\bflambda{\boldsymbol{\lambda}} \def\bfl{\boldsymbol{l}} \def\bfm{\boldsymbol{m}} \def\bfn{\boldsymbol{n}} \def\bfomega{\boldsymbol{\omega}} \def\bfone{\boldsymbol{1}} \def\bfo{\boldsymbol{o}} \def\bfpdd{\ddot{\bfp}} \def\bfpd{\dot{\bfp}} \def\bfphi{\boldsymbol{\phi}} \def\bfp{\boldsymbol{p}} \def\bfq{\boldsymbol{q}} \def\bfr{\boldsymbol{r}} \def\bfsigma{\boldsymbol{\sigma}} \def\bfs{\boldsymbol{s}} \def\bftau{\boldsymbol{\tau}} \def\bft{\boldsymbol{t}} \def\bfu{\boldsymbol{u}} \def\bfv{\boldsymbol{v}} \def\bfw{\boldsymbol{w}} \def\bfxi{\boldsymbol{\xi}} \def\bfx{\boldsymbol{x}} \def\bfy{\boldsymbol{y}} \def\bfzero{\boldsymbol{0}} \def\bfz{\boldsymbol{z}} \def\calA{\mathcal{A}} \def\calB{\mathcal{B}} \def\calC{\mathcal{C}} \def\calD{\mathcal{D}} \def\calE{\mathcal{E}} \def\calF{\mathcal{F}} \def\calG{\mathcal{G}} \def\calH{\mathcal{H}} \def\calI{\mathcal{I}} \def\calJ{\mathcal{J}} \def\calK{\mathcal{K}} \def\calL{\mathcal{L}} \def\calM{\mathcal{M}} \def\calN{\mathcal{N}} \def\calO{\mathcal{O}} \def\calP{\mathcal{P}} \def\calQ{\mathcal{Q}} \def\calR{\mathcal{R}} \def\calS{\mathcal{S}} \def\calT{\mathcal{T}} \def\calU{\mathcal{U}} \def\calV{\mathcal{V}} \def\calW{\mathcal{W}} \def\calX{\mathcal{X}} \def\calY{\mathcal{Y}} \def\calZ{\mathcal{Z}} \def\d#1{{\rm d}{#1}} \def\defeq{\stackrel{\mathrm{def}}{=}} \def\dim{\rm dim} \def\p{\boldsymbol{p}} \def\qdd{\ddot{\bfq}} \def\qd{\dot{\bfq}} \def\q{\boldsymbol{q}} \def\xdd{\ddot{x}} \def\xd{\dot{x}} \def\ydd{\ddot{y}} \def\yd{\dot{y}} \def\zdd{\ddot{z}} \def\zd{\dot{z}} n-sided polygon inscribed in the 2D unit circle.

This approximation can be made as close as desired to the original model by increasing the number of edges n\def\LdG{\dot{L}_G} \def\Ld{\dot{L}} \def\bfA{\boldsymbol{A}} \def\bfB{\boldsymbol{B}} \def\bfC{\boldsymbol{C}} \def\bfD{\boldsymbol{D}} \def\bfE{\boldsymbol{E}} \def\bfF{\boldsymbol{F}} \def\bfG{\boldsymbol{G}} \def\bfH{\boldsymbol{H}} \def\bfI{\boldsymbol{I}} \def\bfJ{\boldsymbol{J}} \def\bfK{\boldsymbol{K}} \def\bfL{\boldsymbol{L}} \def\bfM{\boldsymbol{M}} \def\bfN{\boldsymbol{N}} \def\bfO{\boldsymbol{O}} \def\bfP{\boldsymbol{P}} \def\bfQ{\boldsymbol{Q}} \def\bfR{\boldsymbol{R}} \def\bfS{\boldsymbol{S}} \def\bfT{\boldsymbol{T}} \def\bfU{\boldsymbol{U}} \def\bfV{\boldsymbol{V}} \def\bfW{\boldsymbol{W}} \def\bfX{\boldsymbol{X}} \def\bfY{\boldsymbol{Y}} \def\bfZ{\boldsymbol{Z}} \def\bfalpha{\boldsymbol{\alpha}} \def\bfa{\boldsymbol{a}} \def\bfbeta{\boldsymbol{\beta}} \def\bfb{\boldsymbol{b}} \def\bfcd{\dot{\bfc}} \def\bfchi{\boldsymbol{\chi}} \def\bfc{\boldsymbol{c}} \def\bfd{\boldsymbol{d}} \def\bfe{\boldsymbol{e}} \def\bff{\boldsymbol{f}} \def\bfgamma{\boldsymbol{\gamma}} \def\bfg{\boldsymbol{g}} \def\bfh{\boldsymbol{h}} \def\bfi{\boldsymbol{i}} \def\bfj{\boldsymbol{j}} \def\bfk{\boldsymbol{k}} \def\bflambda{\boldsymbol{\lambda}} \def\bfl{\boldsymbol{l}} \def\bfm{\boldsymbol{m}} \def\bfn{\boldsymbol{n}} \def\bfomega{\boldsymbol{\omega}} \def\bfone{\boldsymbol{1}} \def\bfo{\boldsymbol{o}} \def\bfpdd{\ddot{\bfp}} \def\bfpd{\dot{\bfp}} \def\bfphi{\boldsymbol{\phi}} \def\bfp{\boldsymbol{p}} \def\bfq{\boldsymbol{q}} \def\bfr{\boldsymbol{r}} \def\bfsigma{\boldsymbol{\sigma}} \def\bfs{\boldsymbol{s}} \def\bftau{\boldsymbol{\tau}} \def\bft{\boldsymbol{t}} \def\bfu{\boldsymbol{u}} \def\bfv{\boldsymbol{v}} \def\bfw{\boldsymbol{w}} \def\bfxi{\boldsymbol{\xi}} \def\bfx{\boldsymbol{x}} \def\bfy{\boldsymbol{y}} \def\bfzero{\boldsymbol{0}} \def\bfz{\boldsymbol{z}} \def\calA{\mathcal{A}} \def\calB{\mathcal{B}} \def\calC{\mathcal{C}} \def\calD{\mathcal{D}} \def\calE{\mathcal{E}} \def\calF{\mathcal{F}} \def\calG{\mathcal{G}} \def\calH{\mathcal{H}} \def\calI{\mathcal{I}} \def\calJ{\mathcal{J}} \def\calK{\mathcal{K}} \def\calL{\mathcal{L}} \def\calM{\mathcal{M}} \def\calN{\mathcal{N}} \def\calO{\mathcal{O}} \def\calP{\mathcal{P}} \def\calQ{\mathcal{Q}} \def\calR{\mathcal{R}} \def\calS{\mathcal{S}} \def\calT{\mathcal{T}} \def\calU{\mathcal{U}} \def\calV{\mathcal{V}} \def\calW{\mathcal{W}} \def\calX{\mathcal{X}} \def\calY{\mathcal{Y}} \def\calZ{\mathcal{Z}} \def\d#1{{\rm d}{#1}} \def\defeq{\stackrel{\mathrm{def}}{=}} \def\dim{\rm dim} \def\p{\boldsymbol{p}} \def\qdd{\ddot{\bfq}} \def\qd{\dot{\bfq}} \def\q{\boldsymbol{q}} \def\xdd{\ddot{x}} \def\xd{\dot{x}} \def\ydd{\ddot{y}} \def\yd{\dot{y}} \def\zdd{\ddot{z}} \def\zd{\dot{z}} n of the section polygon Pn\def\LdG{\dot{L}_G} \def\Ld{\dot{L}} \def\bfA{\boldsymbol{A}} \def\bfB{\boldsymbol{B}} \def\bfC{\boldsymbol{C}} \def\bfD{\boldsymbol{D}} \def\bfE{\boldsymbol{E}} \def\bfF{\boldsymbol{F}} \def\bfG{\boldsymbol{G}} \def\bfH{\boldsymbol{H}} \def\bfI{\boldsymbol{I}} \def\bfJ{\boldsymbol{J}} \def\bfK{\boldsymbol{K}} \def\bfL{\boldsymbol{L}} \def\bfM{\boldsymbol{M}} \def\bfN{\boldsymbol{N}} \def\bfO{\boldsymbol{O}} \def\bfP{\boldsymbol{P}} \def\bfQ{\boldsymbol{Q}} \def\bfR{\boldsymbol{R}} \def\bfS{\boldsymbol{S}} \def\bfT{\boldsymbol{T}} \def\bfU{\boldsymbol{U}} \def\bfV{\boldsymbol{V}} \def\bfW{\boldsymbol{W}} \def\bfX{\boldsymbol{X}} \def\bfY{\boldsymbol{Y}} \def\bfZ{\boldsymbol{Z}} \def\bfalpha{\boldsymbol{\alpha}} \def\bfa{\boldsymbol{a}} \def\bfbeta{\boldsymbol{\beta}} \def\bfb{\boldsymbol{b}} \def\bfcd{\dot{\bfc}} \def\bfchi{\boldsymbol{\chi}} \def\bfc{\boldsymbol{c}} \def\bfd{\boldsymbol{d}} \def\bfe{\boldsymbol{e}} \def\bff{\boldsymbol{f}} \def\bfgamma{\boldsymbol{\gamma}} \def\bfg{\boldsymbol{g}} \def\bfh{\boldsymbol{h}} \def\bfi{\boldsymbol{i}} \def\bfj{\boldsymbol{j}} \def\bfk{\boldsymbol{k}} \def\bflambda{\boldsymbol{\lambda}} \def\bfl{\boldsymbol{l}} \def\bfm{\boldsymbol{m}} \def\bfn{\boldsymbol{n}} \def\bfomega{\boldsymbol{\omega}} \def\bfone{\boldsymbol{1}} \def\bfo{\boldsymbol{o}} \def\bfpdd{\ddot{\bfp}} \def\bfpd{\dot{\bfp}} \def\bfphi{\boldsymbol{\phi}} \def\bfp{\boldsymbol{p}} \def\bfq{\boldsymbol{q}} \def\bfr{\boldsymbol{r}} \def\bfsigma{\boldsymbol{\sigma}} \def\bfs{\boldsymbol{s}} \def\bftau{\boldsymbol{\tau}} \def\bft{\boldsymbol{t}} \def\bfu{\boldsymbol{u}} \def\bfv{\boldsymbol{v}} \def\bfw{\boldsymbol{w}} \def\bfxi{\boldsymbol{\xi}} \def\bfx{\boldsymbol{x}} \def\bfy{\boldsymbol{y}} \def\bfzero{\boldsymbol{0}} \def\bfz{\boldsymbol{z}} \def\calA{\mathcal{A}} \def\calB{\mathcal{B}} \def\calC{\mathcal{C}} \def\calD{\mathcal{D}} \def\calE{\mathcal{E}} \def\calF{\mathcal{F}} \def\calG{\mathcal{G}} \def\calH{\mathcal{H}} \def\calI{\mathcal{I}} \def\calJ{\mathcal{J}} \def\calK{\mathcal{K}} \def\calL{\mathcal{L}} \def\calM{\mathcal{M}} \def\calN{\mathcal{N}} \def\calO{\mathcal{O}} \def\calP{\mathcal{P}} \def\calQ{\mathcal{Q}} \def\calR{\mathcal{R}} \def\calS{\mathcal{S}} \def\calT{\mathcal{T}} \def\calU{\mathcal{U}} \def\calV{\mathcal{V}} \def\calW{\mathcal{W}} \def\calX{\mathcal{X}} \def\calY{\mathcal{Y}} \def\calZ{\mathcal{Z}} \def\d#1{{\rm d}{#1}} \def\defeq{\stackrel{\mathrm{def}}{=}} \def\dim{\rm dim} \def\p{\boldsymbol{p}} \def\qdd{\ddot{\bfq}} \def\qd{\dot{\bfq}} \def\q{\boldsymbol{q}} \def\xdd{\ddot{x}} \def\xd{\dot{x}} \def\ydd{\ddot{y}} \def\yd{\dot{y}} \def\zdd{\ddot{z}} \def\zd{\dot{z}} \calP_n. The equation above provides a set of linear inequality constraints. For example, the four-sided friction pyramid obtained for n=4\def\LdG{\dot{L}_G} \def\Ld{\dot{L}} \def\bfA{\boldsymbol{A}} \def\bfB{\boldsymbol{B}} \def\bfC{\boldsymbol{C}} \def\bfD{\boldsymbol{D}} \def\bfE{\boldsymbol{E}} \def\bfF{\boldsymbol{F}} \def\bfG{\boldsymbol{G}} \def\bfH{\boldsymbol{H}} \def\bfI{\boldsymbol{I}} \def\bfJ{\boldsymbol{J}} \def\bfK{\boldsymbol{K}} \def\bfL{\boldsymbol{L}} \def\bfM{\boldsymbol{M}} \def\bfN{\boldsymbol{N}} \def\bfO{\boldsymbol{O}} \def\bfP{\boldsymbol{P}} \def\bfQ{\boldsymbol{Q}} \def\bfR{\boldsymbol{R}} \def\bfS{\boldsymbol{S}} \def\bfT{\boldsymbol{T}} \def\bfU{\boldsymbol{U}} \def\bfV{\boldsymbol{V}} \def\bfW{\boldsymbol{W}} \def\bfX{\boldsymbol{X}} \def\bfY{\boldsymbol{Y}} \def\bfZ{\boldsymbol{Z}} \def\bfalpha{\boldsymbol{\alpha}} \def\bfa{\boldsymbol{a}} \def\bfbeta{\boldsymbol{\beta}} \def\bfb{\boldsymbol{b}} \def\bfcd{\dot{\bfc}} \def\bfchi{\boldsymbol{\chi}} \def\bfc{\boldsymbol{c}} \def\bfd{\boldsymbol{d}} \def\bfe{\boldsymbol{e}} \def\bff{\boldsymbol{f}} \def\bfgamma{\boldsymbol{\gamma}} \def\bfg{\boldsymbol{g}} \def\bfh{\boldsymbol{h}} \def\bfi{\boldsymbol{i}} \def\bfj{\boldsymbol{j}} \def\bfk{\boldsymbol{k}} \def\bflambda{\boldsymbol{\lambda}} \def\bfl{\boldsymbol{l}} \def\bfm{\boldsymbol{m}} \def\bfn{\boldsymbol{n}} \def\bfomega{\boldsymbol{\omega}} \def\bfone{\boldsymbol{1}} \def\bfo{\boldsymbol{o}} \def\bfpdd{\ddot{\bfp}} \def\bfpd{\dot{\bfp}} \def\bfphi{\boldsymbol{\phi}} \def\bfp{\boldsymbol{p}} \def\bfq{\boldsymbol{q}} \def\bfr{\boldsymbol{r}} \def\bfsigma{\boldsymbol{\sigma}} \def\bfs{\boldsymbol{s}} \def\bftau{\boldsymbol{\tau}} \def\bft{\boldsymbol{t}} \def\bfu{\boldsymbol{u}} \def\bfv{\boldsymbol{v}} \def\bfw{\boldsymbol{w}} \def\bfxi{\boldsymbol{\xi}} \def\bfx{\boldsymbol{x}} \def\bfy{\boldsymbol{y}} \def\bfzero{\boldsymbol{0}} \def\bfz{\boldsymbol{z}} \def\calA{\mathcal{A}} \def\calB{\mathcal{B}} \def\calC{\mathcal{C}} \def\calD{\mathcal{D}} \def\calE{\mathcal{E}} \def\calF{\mathcal{F}} \def\calG{\mathcal{G}} \def\calH{\mathcal{H}} \def\calI{\mathcal{I}} \def\calJ{\mathcal{J}} \def\calK{\mathcal{K}} \def\calL{\mathcal{L}} \def\calM{\mathcal{M}} \def\calN{\mathcal{N}} \def\calO{\mathcal{O}} \def\calP{\mathcal{P}} \def\calQ{\mathcal{Q}} \def\calR{\mathcal{R}} \def\calS{\mathcal{S}} \def\calT{\mathcal{T}} \def\calU{\mathcal{U}} \def\calV{\mathcal{V}} \def\calW{\mathcal{W}} \def\calX{\mathcal{X}} \def\calY{\mathcal{Y}} \def\calZ{\mathcal{Z}} \def\d#1{{\rm d}{#1}} \def\defeq{\stackrel{\mathrm{def}}{=}} \def\dim{\rm dim} \def\p{\boldsymbol{p}} \def\qdd{\ddot{\bfq}} \def\qd{\dot{\bfq}} \def\q{\boldsymbol{q}} \def\xdd{\ddot{x}} \def\xd{\dot{x}} \def\ydd{\ddot{y}} \def\yd{\dot{y}} \def\zdd{\ddot{z}} \def\zd{\dot{z}} n=4 can be written:

ficni>0fictiμ~i(ficni),ficbiμ~i(ficni),\def\LdG{\dot{L}_G} \def\Ld{\dot{L}} \def\bfA{\boldsymbol{A}} \def\bfB{\boldsymbol{B}} \def\bfC{\boldsymbol{C}} \def\bfD{\boldsymbol{D}} \def\bfE{\boldsymbol{E}} \def\bfF{\boldsymbol{F}} \def\bfG{\boldsymbol{G}} \def\bfH{\boldsymbol{H}} \def\bfI{\boldsymbol{I}} \def\bfJ{\boldsymbol{J}} \def\bfK{\boldsymbol{K}} \def\bfL{\boldsymbol{L}} \def\bfM{\boldsymbol{M}} \def\bfN{\boldsymbol{N}} \def\bfO{\boldsymbol{O}} \def\bfP{\boldsymbol{P}} \def\bfQ{\boldsymbol{Q}} \def\bfR{\boldsymbol{R}} \def\bfS{\boldsymbol{S}} \def\bfT{\boldsymbol{T}} \def\bfU{\boldsymbol{U}} \def\bfV{\boldsymbol{V}} \def\bfW{\boldsymbol{W}} \def\bfX{\boldsymbol{X}} \def\bfY{\boldsymbol{Y}} \def\bfZ{\boldsymbol{Z}} \def\bfalpha{\boldsymbol{\alpha}} \def\bfa{\boldsymbol{a}} \def\bfbeta{\boldsymbol{\beta}} \def\bfb{\boldsymbol{b}} \def\bfcd{\dot{\bfc}} \def\bfchi{\boldsymbol{\chi}} \def\bfc{\boldsymbol{c}} \def\bfd{\boldsymbol{d}} \def\bfe{\boldsymbol{e}} \def\bff{\boldsymbol{f}} \def\bfgamma{\boldsymbol{\gamma}} \def\bfg{\boldsymbol{g}} \def\bfh{\boldsymbol{h}} \def\bfi{\boldsymbol{i}} \def\bfj{\boldsymbol{j}} \def\bfk{\boldsymbol{k}} \def\bflambda{\boldsymbol{\lambda}} \def\bfl{\boldsymbol{l}} \def\bfm{\boldsymbol{m}} \def\bfn{\boldsymbol{n}} \def\bfomega{\boldsymbol{\omega}} \def\bfone{\boldsymbol{1}} \def\bfo{\boldsymbol{o}} \def\bfpdd{\ddot{\bfp}} \def\bfpd{\dot{\bfp}} \def\bfphi{\boldsymbol{\phi}} \def\bfp{\boldsymbol{p}} \def\bfq{\boldsymbol{q}} \def\bfr{\boldsymbol{r}} \def\bfsigma{\boldsymbol{\sigma}} \def\bfs{\boldsymbol{s}} \def\bftau{\boldsymbol{\tau}} \def\bft{\boldsymbol{t}} \def\bfu{\boldsymbol{u}} \def\bfv{\boldsymbol{v}} \def\bfw{\boldsymbol{w}} \def\bfxi{\boldsymbol{\xi}} \def\bfx{\boldsymbol{x}} \def\bfy{\boldsymbol{y}} \def\bfzero{\boldsymbol{0}} \def\bfz{\boldsymbol{z}} \def\calA{\mathcal{A}} \def\calB{\mathcal{B}} \def\calC{\mathcal{C}} \def\calD{\mathcal{D}} \def\calE{\mathcal{E}} \def\calF{\mathcal{F}} \def\calG{\mathcal{G}} \def\calH{\mathcal{H}} \def\calI{\mathcal{I}} \def\calJ{\mathcal{J}} \def\calK{\mathcal{K}} \def\calL{\mathcal{L}} \def\calM{\mathcal{M}} \def\calN{\mathcal{N}} \def\calO{\mathcal{O}} \def\calP{\mathcal{P}} \def\calQ{\mathcal{Q}} \def\calR{\mathcal{R}} \def\calS{\mathcal{S}} \def\calT{\mathcal{T}} \def\calU{\mathcal{U}} \def\calV{\mathcal{V}} \def\calW{\mathcal{W}} \def\calX{\mathcal{X}} \def\calY{\mathcal{Y}} \def\calZ{\mathcal{Z}} \def\d#1{{\rm d}{#1}} \def\defeq{\stackrel{\mathrm{def}}{=}} \def\dim{\rm dim} \def\p{\boldsymbol{p}} \def\qdd{\ddot{\bfq}} \def\qd{\dot{\bfq}} \def\q{\boldsymbol{q}} \def\xdd{\ddot{x}} \def\xd{\dot{x}} \def\ydd{\ddot{y}} \def\yd{\dot{y}} \def\zdd{\ddot{z}} \def\zd{\dot{z}} \begin{align*} \bff^c_i \cdot \bfn_i & > 0 \\ | \bff^{c}_i \cdot \bft_i | & \leq \tilde{\mu}_i (\bff^{c}_i \cdot \bfn_i), \\ | \bff^{c}_i \cdot \bfb_i | & \leq \tilde{\mu}_i (\bff^{c}_i \cdot \bfn_i), \end{align*}

with (ti,bi)\def\LdG{\dot{L}_G} \def\Ld{\dot{L}} \def\bfA{\boldsymbol{A}} \def\bfB{\boldsymbol{B}} \def\bfC{\boldsymbol{C}} \def\bfD{\boldsymbol{D}} \def\bfE{\boldsymbol{E}} \def\bfF{\boldsymbol{F}} \def\bfG{\boldsymbol{G}} \def\bfH{\boldsymbol{H}} \def\bfI{\boldsymbol{I}} \def\bfJ{\boldsymbol{J}} \def\bfK{\boldsymbol{K}} \def\bfL{\boldsymbol{L}} \def\bfM{\boldsymbol{M}} \def\bfN{\boldsymbol{N}} \def\bfO{\boldsymbol{O}} \def\bfP{\boldsymbol{P}} \def\bfQ{\boldsymbol{Q}} \def\bfR{\boldsymbol{R}} \def\bfS{\boldsymbol{S}} \def\bfT{\boldsymbol{T}} \def\bfU{\boldsymbol{U}} \def\bfV{\boldsymbol{V}} \def\bfW{\boldsymbol{W}} \def\bfX{\boldsymbol{X}} \def\bfY{\boldsymbol{Y}} \def\bfZ{\boldsymbol{Z}} \def\bfalpha{\boldsymbol{\alpha}} \def\bfa{\boldsymbol{a}} \def\bfbeta{\boldsymbol{\beta}} \def\bfb{\boldsymbol{b}} \def\bfcd{\dot{\bfc}} \def\bfchi{\boldsymbol{\chi}} \def\bfc{\boldsymbol{c}} \def\bfd{\boldsymbol{d}} \def\bfe{\boldsymbol{e}} \def\bff{\boldsymbol{f}} \def\bfgamma{\boldsymbol{\gamma}} \def\bfg{\boldsymbol{g}} \def\bfh{\boldsymbol{h}} \def\bfi{\boldsymbol{i}} \def\bfj{\boldsymbol{j}} \def\bfk{\boldsymbol{k}} \def\bflambda{\boldsymbol{\lambda}} \def\bfl{\boldsymbol{l}} \def\bfm{\boldsymbol{m}} \def\bfn{\boldsymbol{n}} \def\bfomega{\boldsymbol{\omega}} \def\bfone{\boldsymbol{1}} \def\bfo{\boldsymbol{o}} \def\bfpdd{\ddot{\bfp}} \def\bfpd{\dot{\bfp}} \def\bfphi{\boldsymbol{\phi}} \def\bfp{\boldsymbol{p}} \def\bfq{\boldsymbol{q}} \def\bfr{\boldsymbol{r}} \def\bfsigma{\boldsymbol{\sigma}} \def\bfs{\boldsymbol{s}} \def\bftau{\boldsymbol{\tau}} \def\bft{\boldsymbol{t}} \def\bfu{\boldsymbol{u}} \def\bfv{\boldsymbol{v}} \def\bfw{\boldsymbol{w}} \def\bfxi{\boldsymbol{\xi}} \def\bfx{\boldsymbol{x}} \def\bfy{\boldsymbol{y}} \def\bfzero{\boldsymbol{0}} \def\bfz{\boldsymbol{z}} \def\calA{\mathcal{A}} \def\calB{\mathcal{B}} \def\calC{\mathcal{C}} \def\calD{\mathcal{D}} \def\calE{\mathcal{E}} \def\calF{\mathcal{F}} \def\calG{\mathcal{G}} \def\calH{\mathcal{H}} \def\calI{\mathcal{I}} \def\calJ{\mathcal{J}} \def\calK{\mathcal{K}} \def\calL{\mathcal{L}} \def\calM{\mathcal{M}} \def\calN{\mathcal{N}} \def\calO{\mathcal{O}} \def\calP{\mathcal{P}} \def\calQ{\mathcal{Q}} \def\calR{\mathcal{R}} \def\calS{\mathcal{S}} \def\calT{\mathcal{T}} \def\calU{\mathcal{U}} \def\calV{\mathcal{V}} \def\calW{\mathcal{W}} \def\calX{\mathcal{X}} \def\calY{\mathcal{Y}} \def\calZ{\mathcal{Z}} \def\d#1{{\rm d}{#1}} \def\defeq{\stackrel{\mathrm{def}}{=}} \def\dim{\rm dim} \def\p{\boldsymbol{p}} \def\qdd{\ddot{\bfq}} \def\qd{\dot{\bfq}} \def\q{\boldsymbol{q}} \def\xdd{\ddot{x}} \def\xd{\dot{x}} \def\ydd{\ddot{y}} \def\yd{\dot{y}} \def\zdd{\ddot{z}} \def\zd{\dot{z}} (\bft_i, \bfb_i) any basis of the tangential contact plane such that (ti,bi,ni)\def\LdG{\dot{L}_G} \def\Ld{\dot{L}} \def\bfA{\boldsymbol{A}} \def\bfB{\boldsymbol{B}} \def\bfC{\boldsymbol{C}} \def\bfD{\boldsymbol{D}} \def\bfE{\boldsymbol{E}} \def\bfF{\boldsymbol{F}} \def\bfG{\boldsymbol{G}} \def\bfH{\boldsymbol{H}} \def\bfI{\boldsymbol{I}} \def\bfJ{\boldsymbol{J}} \def\bfK{\boldsymbol{K}} \def\bfL{\boldsymbol{L}} \def\bfM{\boldsymbol{M}} \def\bfN{\boldsymbol{N}} \def\bfO{\boldsymbol{O}} \def\bfP{\boldsymbol{P}} \def\bfQ{\boldsymbol{Q}} \def\bfR{\boldsymbol{R}} \def\bfS{\boldsymbol{S}} \def\bfT{\boldsymbol{T}} \def\bfU{\boldsymbol{U}} \def\bfV{\boldsymbol{V}} \def\bfW{\boldsymbol{W}} \def\bfX{\boldsymbol{X}} \def\bfY{\boldsymbol{Y}} \def\bfZ{\boldsymbol{Z}} \def\bfalpha{\boldsymbol{\alpha}} \def\bfa{\boldsymbol{a}} \def\bfbeta{\boldsymbol{\beta}} \def\bfb{\boldsymbol{b}} \def\bfcd{\dot{\bfc}} \def\bfchi{\boldsymbol{\chi}} \def\bfc{\boldsymbol{c}} \def\bfd{\boldsymbol{d}} \def\bfe{\boldsymbol{e}} \def\bff{\boldsymbol{f}} \def\bfgamma{\boldsymbol{\gamma}} \def\bfg{\boldsymbol{g}} \def\bfh{\boldsymbol{h}} \def\bfi{\boldsymbol{i}} \def\bfj{\boldsymbol{j}} \def\bfk{\boldsymbol{k}} \def\bflambda{\boldsymbol{\lambda}} \def\bfl{\boldsymbol{l}} \def\bfm{\boldsymbol{m}} \def\bfn{\boldsymbol{n}} \def\bfomega{\boldsymbol{\omega}} \def\bfone{\boldsymbol{1}} \def\bfo{\boldsymbol{o}} \def\bfpdd{\ddot{\bfp}} \def\bfpd{\dot{\bfp}} \def\bfphi{\boldsymbol{\phi}} \def\bfp{\boldsymbol{p}} \def\bfq{\boldsymbol{q}} \def\bfr{\boldsymbol{r}} \def\bfsigma{\boldsymbol{\sigma}} \def\bfs{\boldsymbol{s}} \def\bftau{\boldsymbol{\tau}} \def\bft{\boldsymbol{t}} \def\bfu{\boldsymbol{u}} \def\bfv{\boldsymbol{v}} \def\bfw{\boldsymbol{w}} \def\bfxi{\boldsymbol{\xi}} \def\bfx{\boldsymbol{x}} \def\bfy{\boldsymbol{y}} \def\bfzero{\boldsymbol{0}} \def\bfz{\boldsymbol{z}} \def\calA{\mathcal{A}} \def\calB{\mathcal{B}} \def\calC{\mathcal{C}} \def\calD{\mathcal{D}} \def\calE{\mathcal{E}} \def\calF{\mathcal{F}} \def\calG{\mathcal{G}} \def\calH{\mathcal{H}} \def\calI{\mathcal{I}} \def\calJ{\mathcal{J}} \def\calK{\mathcal{K}} \def\calL{\mathcal{L}} \def\calM{\mathcal{M}} \def\calN{\mathcal{N}} \def\calO{\mathcal{O}} \def\calP{\mathcal{P}} \def\calQ{\mathcal{Q}} \def\calR{\mathcal{R}} \def\calS{\mathcal{S}} \def\calT{\mathcal{T}} \def\calU{\mathcal{U}} \def\calV{\mathcal{V}} \def\calW{\mathcal{W}} \def\calX{\mathcal{X}} \def\calY{\mathcal{Y}} \def\calZ{\mathcal{Z}} \def\d#1{{\rm d}{#1}} \def\defeq{\stackrel{\mathrm{def}}{=}} \def\dim{\rm dim} \def\p{\boldsymbol{p}} \def\qdd{\ddot{\bfq}} \def\qd{\dot{\bfq}} \def\q{\boldsymbol{q}} \def\xdd{\ddot{x}} \def\xd{\dot{x}} \def\ydd{\ddot{y}} \def\yd{\dot{y}} \def\zdd{\ddot{z}} \def\zd{\dot{z}} (\bft_i, \bfb_i, \bfn_i) is a direct frame. For μ~i=μi\def\LdG{\dot{L}_G} \def\Ld{\dot{L}} \def\bfA{\boldsymbol{A}} \def\bfB{\boldsymbol{B}} \def\bfC{\boldsymbol{C}} \def\bfD{\boldsymbol{D}} \def\bfE{\boldsymbol{E}} \def\bfF{\boldsymbol{F}} \def\bfG{\boldsymbol{G}} \def\bfH{\boldsymbol{H}} \def\bfI{\boldsymbol{I}} \def\bfJ{\boldsymbol{J}} \def\bfK{\boldsymbol{K}} \def\bfL{\boldsymbol{L}} \def\bfM{\boldsymbol{M}} \def\bfN{\boldsymbol{N}} \def\bfO{\boldsymbol{O}} \def\bfP{\boldsymbol{P}} \def\bfQ{\boldsymbol{Q}} \def\bfR{\boldsymbol{R}} \def\bfS{\boldsymbol{S}} \def\bfT{\boldsymbol{T}} \def\bfU{\boldsymbol{U}} \def\bfV{\boldsymbol{V}} \def\bfW{\boldsymbol{W}} \def\bfX{\boldsymbol{X}} \def\bfY{\boldsymbol{Y}} \def\bfZ{\boldsymbol{Z}} \def\bfalpha{\boldsymbol{\alpha}} \def\bfa{\boldsymbol{a}} \def\bfbeta{\boldsymbol{\beta}} \def\bfb{\boldsymbol{b}} \def\bfcd{\dot{\bfc}} \def\bfchi{\boldsymbol{\chi}} \def\bfc{\boldsymbol{c}} \def\bfd{\boldsymbol{d}} \def\bfe{\boldsymbol{e}} \def\bff{\boldsymbol{f}} \def\bfgamma{\boldsymbol{\gamma}} \def\bfg{\boldsymbol{g}} \def\bfh{\boldsymbol{h}} \def\bfi{\boldsymbol{i}} \def\bfj{\boldsymbol{j}} \def\bfk{\boldsymbol{k}} \def\bflambda{\boldsymbol{\lambda}} \def\bfl{\boldsymbol{l}} \def\bfm{\boldsymbol{m}} \def\bfn{\boldsymbol{n}} \def\bfomega{\boldsymbol{\omega}} \def\bfone{\boldsymbol{1}} \def\bfo{\boldsymbol{o}} \def\bfpdd{\ddot{\bfp}} \def\bfpd{\dot{\bfp}} \def\bfphi{\boldsymbol{\phi}} \def\bfp{\boldsymbol{p}} \def\bfq{\boldsymbol{q}} \def\bfr{\boldsymbol{r}} \def\bfsigma{\boldsymbol{\sigma}} \def\bfs{\boldsymbol{s}} \def\bftau{\boldsymbol{\tau}} \def\bft{\boldsymbol{t}} \def\bfu{\boldsymbol{u}} \def\bfv{\boldsymbol{v}} \def\bfw{\boldsymbol{w}} \def\bfxi{\boldsymbol{\xi}} \def\bfx{\boldsymbol{x}} \def\bfy{\boldsymbol{y}} \def\bfzero{\boldsymbol{0}} \def\bfz{\boldsymbol{z}} \def\calA{\mathcal{A}} \def\calB{\mathcal{B}} \def\calC{\mathcal{C}} \def\calD{\mathcal{D}} \def\calE{\mathcal{E}} \def\calF{\mathcal{F}} \def\calG{\mathcal{G}} \def\calH{\mathcal{H}} \def\calI{\mathcal{I}} \def\calJ{\mathcal{J}} \def\calK{\mathcal{K}} \def\calL{\mathcal{L}} \def\calM{\mathcal{M}} \def\calN{\mathcal{N}} \def\calO{\mathcal{O}} \def\calP{\mathcal{P}} \def\calQ{\mathcal{Q}} \def\calR{\mathcal{R}} \def\calS{\mathcal{S}} \def\calT{\mathcal{T}} \def\calU{\mathcal{U}} \def\calV{\mathcal{V}} \def\calW{\mathcal{W}} \def\calX{\mathcal{X}} \def\calY{\mathcal{Y}} \def\calZ{\mathcal{Z}} \def\d#1{{\rm d}{#1}} \def\defeq{\stackrel{\mathrm{def}}{=}} \def\dim{\rm dim} \def\p{\boldsymbol{p}} \def\qdd{\ddot{\bfq}} \def\qd{\dot{\bfq}} \def\q{\boldsymbol{q}} \def\xdd{\ddot{x}} \def\xd{\dot{x}} \def\ydd{\ddot{y}} \def\yd{\dot{y}} \def\zdd{\ddot{z}} \def\zd{\dot{z}} \tilde{\mu}_i = \mu_i, the linearized Coulomb cone is an outer approximation of the circular one, while it is an inner approximation for μ~i=μi/2\def\LdG{\dot{L}_G} \def\Ld{\dot{L}} \def\bfA{\boldsymbol{A}} \def\bfB{\boldsymbol{B}} \def\bfC{\boldsymbol{C}} \def\bfD{\boldsymbol{D}} \def\bfE{\boldsymbol{E}} \def\bfF{\boldsymbol{F}} \def\bfG{\boldsymbol{G}} \def\bfH{\boldsymbol{H}} \def\bfI{\boldsymbol{I}} \def\bfJ{\boldsymbol{J}} \def\bfK{\boldsymbol{K}} \def\bfL{\boldsymbol{L}} \def\bfM{\boldsymbol{M}} \def\bfN{\boldsymbol{N}} \def\bfO{\boldsymbol{O}} \def\bfP{\boldsymbol{P}} \def\bfQ{\boldsymbol{Q}} \def\bfR{\boldsymbol{R}} \def\bfS{\boldsymbol{S}} \def\bfT{\boldsymbol{T}} \def\bfU{\boldsymbol{U}} \def\bfV{\boldsymbol{V}} \def\bfW{\boldsymbol{W}} \def\bfX{\boldsymbol{X}} \def\bfY{\boldsymbol{Y}} \def\bfZ{\boldsymbol{Z}} \def\bfalpha{\boldsymbol{\alpha}} \def\bfa{\boldsymbol{a}} \def\bfbeta{\boldsymbol{\beta}} \def\bfb{\boldsymbol{b}} \def\bfcd{\dot{\bfc}} \def\bfchi{\boldsymbol{\chi}} \def\bfc{\boldsymbol{c}} \def\bfd{\boldsymbol{d}} \def\bfe{\boldsymbol{e}} \def\bff{\boldsymbol{f}} \def\bfgamma{\boldsymbol{\gamma}} \def\bfg{\boldsymbol{g}} \def\bfh{\boldsymbol{h}} \def\bfi{\boldsymbol{i}} \def\bfj{\boldsymbol{j}} \def\bfk{\boldsymbol{k}} \def\bflambda{\boldsymbol{\lambda}} \def\bfl{\boldsymbol{l}} \def\bfm{\boldsymbol{m}} \def\bfn{\boldsymbol{n}} \def\bfomega{\boldsymbol{\omega}} \def\bfone{\boldsymbol{1}} \def\bfo{\boldsymbol{o}} \def\bfpdd{\ddot{\bfp}} \def\bfpd{\dot{\bfp}} \def\bfphi{\boldsymbol{\phi}} \def\bfp{\boldsymbol{p}} \def\bfq{\boldsymbol{q}} \def\bfr{\boldsymbol{r}} \def\bfsigma{\boldsymbol{\sigma}} \def\bfs{\boldsymbol{s}} \def\bftau{\boldsymbol{\tau}} \def\bft{\boldsymbol{t}} \def\bfu{\boldsymbol{u}} \def\bfv{\boldsymbol{v}} \def\bfw{\boldsymbol{w}} \def\bfxi{\boldsymbol{\xi}} \def\bfx{\boldsymbol{x}} \def\bfy{\boldsymbol{y}} \def\bfzero{\boldsymbol{0}} \def\bfz{\boldsymbol{z}} \def\calA{\mathcal{A}} \def\calB{\mathcal{B}} \def\calC{\mathcal{C}} \def\calD{\mathcal{D}} \def\calE{\mathcal{E}} \def\calF{\mathcal{F}} \def\calG{\mathcal{G}} \def\calH{\mathcal{H}} \def\calI{\mathcal{I}} \def\calJ{\mathcal{J}} \def\calK{\mathcal{K}} \def\calL{\mathcal{L}} \def\calM{\mathcal{M}} \def\calN{\mathcal{N}} \def\calO{\mathcal{O}} \def\calP{\mathcal{P}} \def\calQ{\mathcal{Q}} \def\calR{\mathcal{R}} \def\calS{\mathcal{S}} \def\calT{\mathcal{T}} \def\calU{\mathcal{U}} \def\calV{\mathcal{V}} \def\calW{\mathcal{W}} \def\calX{\mathcal{X}} \def\calY{\mathcal{Y}} \def\calZ{\mathcal{Z}} \def\d#1{{\rm d}{#1}} \def\defeq{\stackrel{\mathrm{def}}{=}} \def\dim{\rm dim} \def\p{\boldsymbol{p}} \def\qdd{\ddot{\bfq}} \def\qd{\dot{\bfq}} \def\q{\boldsymbol{q}} \def\xdd{\ddot{x}} \def\xd{\dot{x}} \def\ydd{\ddot{y}} \def\yd{\dot{y}} \def\zdd{\ddot{z}} \def\zd{\dot{z}} \tilde{\mu}_i = \mu_i / \sqrt{2}:

Friction cones with outer and inner linear approximations

Coulomb friction cone (left) with outer (middle) and inner (right) linear approximations.

To go further

Individual friction cones can be combined into wrench friction cones using polyhedral geometry. We can for instance apply the double description method to compute centroidal wrench cones of articulated robots.

Discussion

There are no comments yet. Feel free to leave a reply using the form below.

Post a comment

You can use Markdown with $\LaTeX$ formulas in your comment.

You agree to the publication of your comment on this page under the CC BY 4.0 license.

Your email address will not be published.