Linear Programming in Python with CVXOPT

In a previous post, I compared the performances of two Linear Programming (LP) solvers, COIN and GLPK, called by a Python library named PuLP. It then took around 100 ms to solve problems of moderate size. As it turns out, this is way too slow for this kind of problems, probably due to the fact that PuLP calls solvers externally via the command line. In this second post, I used the CVXOPT library and compared the performances with the previous approach. As it turns out, using CVXOPT is 50~70 times faster! Where it took 100 ms with PuLP, it now takes 2~3 ms with CVXOPT on my machine.

CVXOPT setup

If you don't plan on using external solvers such as GLPK or MOSEK, installing CVXOPT on Ubuntu or Debian is as simple as:

$ sudo apt-get install python-cvxopt

To install GLPK as well, you'd best build from source. An easy way to get everything done automatically is to use pip:

$ sudo apt-get install libglpk-dev
$ sudo CVXOPT_BUILD_GLPK=1 pip install cvxopt

You should now be able to import cvxopt from Python.

Matrix-vector LP problem

The problem for this benchmark is the same as in the previous post: find a vector x[xmin,xmax]n\def\LdG{\dot{L}_G} \def\Ld{\dot{L}} \def\bfA{\boldsymbol{A}} \def\bfB{\boldsymbol{B}} \def\bfC{\boldsymbol{C}} \def\bfD{\boldsymbol{D}} \def\bfE{\boldsymbol{E}} \def\bfF{\boldsymbol{F}} \def\bfG{\boldsymbol{G}} \def\bfH{\boldsymbol{H}} \def\bfI{\boldsymbol{I}} \def\bfJ{\boldsymbol{J}} \def\bfK{\boldsymbol{K}} \def\bfL{\boldsymbol{L}} \def\bfM{\boldsymbol{M}} \def\bfN{\boldsymbol{N}} \def\bfO{\boldsymbol{O}} \def\bfP{\boldsymbol{P}} \def\bfQ{\boldsymbol{Q}} \def\bfR{\boldsymbol{R}} \def\bfS{\boldsymbol{S}} \def\bfT{\boldsymbol{T}} \def\bfU{\boldsymbol{U}} \def\bfV{\boldsymbol{V}} \def\bfW{\boldsymbol{W}} \def\bfX{\boldsymbol{X}} \def\bfY{\boldsymbol{Y}} \def\bfZ{\boldsymbol{Z}} \def\bfalpha{\boldsymbol{\alpha}} \def\bfa{\boldsymbol{a}} \def\bfbeta{\boldsymbol{\beta}} \def\bfb{\boldsymbol{b}} \def\bfcd{\dot{\bfc}} \def\bfchi{\boldsymbol{\chi}} \def\bfc{\boldsymbol{c}} \def\bfd{\boldsymbol{d}} \def\bfe{\boldsymbol{e}} \def\bff{\boldsymbol{f}} \def\bfgamma{\boldsymbol{\gamma}} \def\bfg{\boldsymbol{g}} \def\bfh{\boldsymbol{h}} \def\bfi{\boldsymbol{i}} \def\bfj{\boldsymbol{j}} \def\bfk{\boldsymbol{k}} \def\bflambda{\boldsymbol{\lambda}} \def\bfl{\boldsymbol{l}} \def\bfm{\boldsymbol{m}} \def\bfn{\boldsymbol{n}} \def\bfomega{\boldsymbol{\omega}} \def\bfone{\boldsymbol{1}} \def\bfo{\boldsymbol{o}} \def\bfpdd{\ddot{\bfp}} \def\bfpd{\dot{\bfp}} \def\bfphi{\boldsymbol{\phi}} \def\bfp{\boldsymbol{p}} \def\bfq{\boldsymbol{q}} \def\bfr{\boldsymbol{r}} \def\bfsigma{\boldsymbol{\sigma}} \def\bfs{\boldsymbol{s}} \def\bftau{\boldsymbol{\tau}} \def\bft{\boldsymbol{t}} \def\bfu{\boldsymbol{u}} \def\bfv{\boldsymbol{v}} \def\bfw{\boldsymbol{w}} \def\bfxi{\boldsymbol{\xi}} \def\bfx{\boldsymbol{x}} \def\bfy{\boldsymbol{y}} \def\bfzero{\boldsymbol{0}} \def\bfz{\boldsymbol{z}} \def\calA{\mathcal{A}} \def\calB{\mathcal{B}} \def\calC{\mathcal{C}} \def\calD{\mathcal{D}} \def\calE{\mathcal{E}} \def\calF{\mathcal{F}} \def\calG{\mathcal{G}} \def\calH{\mathcal{H}} \def\calI{\mathcal{I}} \def\calJ{\mathcal{J}} \def\calK{\mathcal{K}} \def\calL{\mathcal{L}} \def\calM{\mathcal{M}} \def\calN{\mathcal{N}} \def\calO{\mathcal{O}} \def\calP{\mathcal{P}} \def\calQ{\mathcal{Q}} \def\calR{\mathcal{R}} \def\calS{\mathcal{S}} \def\calT{\mathcal{T}} \def\calU{\mathcal{U}} \def\calV{\mathcal{V}} \def\calW{\mathcal{W}} \def\calX{\mathcal{X}} \def\calY{\mathcal{Y}} \def\calZ{\mathcal{Z}} \def\d#1{{\rm d}{#1}} \def\defeq{\stackrel{\mathrm{def}}{=}} \def\dim{\rm dim} \def\p{\boldsymbol{p}} \def\qdd{\ddot{\bfq}} \def\qd{\dot{\bfq}} \def\q{\boldsymbol{q}} \def\xdd{\ddot{x}} \def\xd{\dot{x}} \def\ydd{\ddot{y}} \def\yd{\dot{y}} \def\zdd{\ddot{z}} \def\zd{\dot{z}} {\bf x} \in [x_{\mathit{min}}, x_{\mathit{max}}]^n that minimizes the maximum of a set of affine functions:

minimizemsubject toi,ai+jbijxjmi,xminxixmax\def\LdG{\dot{L}_G} \def\Ld{\dot{L}} \def\bfA{\boldsymbol{A}} \def\bfB{\boldsymbol{B}} \def\bfC{\boldsymbol{C}} \def\bfD{\boldsymbol{D}} \def\bfE{\boldsymbol{E}} \def\bfF{\boldsymbol{F}} \def\bfG{\boldsymbol{G}} \def\bfH{\boldsymbol{H}} \def\bfI{\boldsymbol{I}} \def\bfJ{\boldsymbol{J}} \def\bfK{\boldsymbol{K}} \def\bfL{\boldsymbol{L}} \def\bfM{\boldsymbol{M}} \def\bfN{\boldsymbol{N}} \def\bfO{\boldsymbol{O}} \def\bfP{\boldsymbol{P}} \def\bfQ{\boldsymbol{Q}} \def\bfR{\boldsymbol{R}} \def\bfS{\boldsymbol{S}} \def\bfT{\boldsymbol{T}} \def\bfU{\boldsymbol{U}} \def\bfV{\boldsymbol{V}} \def\bfW{\boldsymbol{W}} \def\bfX{\boldsymbol{X}} \def\bfY{\boldsymbol{Y}} \def\bfZ{\boldsymbol{Z}} \def\bfalpha{\boldsymbol{\alpha}} \def\bfa{\boldsymbol{a}} \def\bfbeta{\boldsymbol{\beta}} \def\bfb{\boldsymbol{b}} \def\bfcd{\dot{\bfc}} \def\bfchi{\boldsymbol{\chi}} \def\bfc{\boldsymbol{c}} \def\bfd{\boldsymbol{d}} \def\bfe{\boldsymbol{e}} \def\bff{\boldsymbol{f}} \def\bfgamma{\boldsymbol{\gamma}} \def\bfg{\boldsymbol{g}} \def\bfh{\boldsymbol{h}} \def\bfi{\boldsymbol{i}} \def\bfj{\boldsymbol{j}} \def\bfk{\boldsymbol{k}} \def\bflambda{\boldsymbol{\lambda}} \def\bfl{\boldsymbol{l}} \def\bfm{\boldsymbol{m}} \def\bfn{\boldsymbol{n}} \def\bfomega{\boldsymbol{\omega}} \def\bfone{\boldsymbol{1}} \def\bfo{\boldsymbol{o}} \def\bfpdd{\ddot{\bfp}} \def\bfpd{\dot{\bfp}} \def\bfphi{\boldsymbol{\phi}} \def\bfp{\boldsymbol{p}} \def\bfq{\boldsymbol{q}} \def\bfr{\boldsymbol{r}} \def\bfsigma{\boldsymbol{\sigma}} \def\bfs{\boldsymbol{s}} \def\bftau{\boldsymbol{\tau}} \def\bft{\boldsymbol{t}} \def\bfu{\boldsymbol{u}} \def\bfv{\boldsymbol{v}} \def\bfw{\boldsymbol{w}} \def\bfxi{\boldsymbol{\xi}} \def\bfx{\boldsymbol{x}} \def\bfy{\boldsymbol{y}} \def\bfzero{\boldsymbol{0}} \def\bfz{\boldsymbol{z}} \def\calA{\mathcal{A}} \def\calB{\mathcal{B}} \def\calC{\mathcal{C}} \def\calD{\mathcal{D}} \def\calE{\mathcal{E}} \def\calF{\mathcal{F}} \def\calG{\mathcal{G}} \def\calH{\mathcal{H}} \def\calI{\mathcal{I}} \def\calJ{\mathcal{J}} \def\calK{\mathcal{K}} \def\calL{\mathcal{L}} \def\calM{\mathcal{M}} \def\calN{\mathcal{N}} \def\calO{\mathcal{O}} \def\calP{\mathcal{P}} \def\calQ{\mathcal{Q}} \def\calR{\mathcal{R}} \def\calS{\mathcal{S}} \def\calT{\mathcal{T}} \def\calU{\mathcal{U}} \def\calV{\mathcal{V}} \def\calW{\mathcal{W}} \def\calX{\mathcal{X}} \def\calY{\mathcal{Y}} \def\calZ{\mathcal{Z}} \def\d#1{{\rm d}{#1}} \def\defeq{\stackrel{\mathrm{def}}{=}} \def\dim{\rm dim} \def\p{\boldsymbol{p}} \def\qdd{\ddot{\bfq}} \def\qd{\dot{\bfq}} \def\q{\boldsymbol{q}} \def\xdd{\ddot{x}} \def\xd{\dot{x}} \def\ydd{\ddot{y}} \def\yd{\dot{y}} \def\zdd{\ddot{z}} \def\zd{\dot{z}} \begin{array}{rl} \textrm{minimize} & m \\ \textrm{subject to} & \forall i, \, a_i + \sum_j b_{ij}\,x_j \leq m \\ & \forall i, x_{\mathit{min}} \leq x_i \leq x_{\mathit{max}} \\ \end{array}

However, from CVXOPT's documentation, CVXOPT takes LP problems formulated as:

minimizecxsubject toGxhAx=b\def\LdG{\dot{L}_G} \def\Ld{\dot{L}} \def\bfA{\boldsymbol{A}} \def\bfB{\boldsymbol{B}} \def\bfC{\boldsymbol{C}} \def\bfD{\boldsymbol{D}} \def\bfE{\boldsymbol{E}} \def\bfF{\boldsymbol{F}} \def\bfG{\boldsymbol{G}} \def\bfH{\boldsymbol{H}} \def\bfI{\boldsymbol{I}} \def\bfJ{\boldsymbol{J}} \def\bfK{\boldsymbol{K}} \def\bfL{\boldsymbol{L}} \def\bfM{\boldsymbol{M}} \def\bfN{\boldsymbol{N}} \def\bfO{\boldsymbol{O}} \def\bfP{\boldsymbol{P}} \def\bfQ{\boldsymbol{Q}} \def\bfR{\boldsymbol{R}} \def\bfS{\boldsymbol{S}} \def\bfT{\boldsymbol{T}} \def\bfU{\boldsymbol{U}} \def\bfV{\boldsymbol{V}} \def\bfW{\boldsymbol{W}} \def\bfX{\boldsymbol{X}} \def\bfY{\boldsymbol{Y}} \def\bfZ{\boldsymbol{Z}} \def\bfalpha{\boldsymbol{\alpha}} \def\bfa{\boldsymbol{a}} \def\bfbeta{\boldsymbol{\beta}} \def\bfb{\boldsymbol{b}} \def\bfcd{\dot{\bfc}} \def\bfchi{\boldsymbol{\chi}} \def\bfc{\boldsymbol{c}} \def\bfd{\boldsymbol{d}} \def\bfe{\boldsymbol{e}} \def\bff{\boldsymbol{f}} \def\bfgamma{\boldsymbol{\gamma}} \def\bfg{\boldsymbol{g}} \def\bfh{\boldsymbol{h}} \def\bfi{\boldsymbol{i}} \def\bfj{\boldsymbol{j}} \def\bfk{\boldsymbol{k}} \def\bflambda{\boldsymbol{\lambda}} \def\bfl{\boldsymbol{l}} \def\bfm{\boldsymbol{m}} \def\bfn{\boldsymbol{n}} \def\bfomega{\boldsymbol{\omega}} \def\bfone{\boldsymbol{1}} \def\bfo{\boldsymbol{o}} \def\bfpdd{\ddot{\bfp}} \def\bfpd{\dot{\bfp}} \def\bfphi{\boldsymbol{\phi}} \def\bfp{\boldsymbol{p}} \def\bfq{\boldsymbol{q}} \def\bfr{\boldsymbol{r}} \def\bfsigma{\boldsymbol{\sigma}} \def\bfs{\boldsymbol{s}} \def\bftau{\boldsymbol{\tau}} \def\bft{\boldsymbol{t}} \def\bfu{\boldsymbol{u}} \def\bfv{\boldsymbol{v}} \def\bfw{\boldsymbol{w}} \def\bfxi{\boldsymbol{\xi}} \def\bfx{\boldsymbol{x}} \def\bfy{\boldsymbol{y}} \def\bfzero{\boldsymbol{0}} \def\bfz{\boldsymbol{z}} \def\calA{\mathcal{A}} \def\calB{\mathcal{B}} \def\calC{\mathcal{C}} \def\calD{\mathcal{D}} \def\calE{\mathcal{E}} \def\calF{\mathcal{F}} \def\calG{\mathcal{G}} \def\calH{\mathcal{H}} \def\calI{\mathcal{I}} \def\calJ{\mathcal{J}} \def\calK{\mathcal{K}} \def\calL{\mathcal{L}} \def\calM{\mathcal{M}} \def\calN{\mathcal{N}} \def\calO{\mathcal{O}} \def\calP{\mathcal{P}} \def\calQ{\mathcal{Q}} \def\calR{\mathcal{R}} \def\calS{\mathcal{S}} \def\calT{\mathcal{T}} \def\calU{\mathcal{U}} \def\calV{\mathcal{V}} \def\calW{\mathcal{W}} \def\calX{\mathcal{X}} \def\calY{\mathcal{Y}} \def\calZ{\mathcal{Z}} \def\d#1{{\rm d}{#1}} \def\defeq{\stackrel{\mathrm{def}}{=}} \def\dim{\rm dim} \def\p{\boldsymbol{p}} \def\qdd{\ddot{\bfq}} \def\qd{\dot{\bfq}} \def\q{\boldsymbol{q}} \def\xdd{\ddot{x}} \def\xd{\dot{x}} \def\ydd{\ddot{y}} \def\yd{\dot{y}} \def\zdd{\ddot{z}} \def\zd{\dot{z}} \begin{align*} \textrm{minimize} \quad & {\bf c}^\top {\bf x} \\ \textrm{subject to} \quad & {\bf G} {\bf x} \leq {\bf h} \\ & {\bf A} {\bf x} = {\bf b} \end{align*}

We thus need to formulate our problem in matrix-vector form. First, we append m\def\LdG{\dot{L}_G} \def\Ld{\dot{L}} \def\bfA{\boldsymbol{A}} \def\bfB{\boldsymbol{B}} \def\bfC{\boldsymbol{C}} \def\bfD{\boldsymbol{D}} \def\bfE{\boldsymbol{E}} \def\bfF{\boldsymbol{F}} \def\bfG{\boldsymbol{G}} \def\bfH{\boldsymbol{H}} \def\bfI{\boldsymbol{I}} \def\bfJ{\boldsymbol{J}} \def\bfK{\boldsymbol{K}} \def\bfL{\boldsymbol{L}} \def\bfM{\boldsymbol{M}} \def\bfN{\boldsymbol{N}} \def\bfO{\boldsymbol{O}} \def\bfP{\boldsymbol{P}} \def\bfQ{\boldsymbol{Q}} \def\bfR{\boldsymbol{R}} \def\bfS{\boldsymbol{S}} \def\bfT{\boldsymbol{T}} \def\bfU{\boldsymbol{U}} \def\bfV{\boldsymbol{V}} \def\bfW{\boldsymbol{W}} \def\bfX{\boldsymbol{X}} \def\bfY{\boldsymbol{Y}} \def\bfZ{\boldsymbol{Z}} \def\bfalpha{\boldsymbol{\alpha}} \def\bfa{\boldsymbol{a}} \def\bfbeta{\boldsymbol{\beta}} \def\bfb{\boldsymbol{b}} \def\bfcd{\dot{\bfc}} \def\bfchi{\boldsymbol{\chi}} \def\bfc{\boldsymbol{c}} \def\bfd{\boldsymbol{d}} \def\bfe{\boldsymbol{e}} \def\bff{\boldsymbol{f}} \def\bfgamma{\boldsymbol{\gamma}} \def\bfg{\boldsymbol{g}} \def\bfh{\boldsymbol{h}} \def\bfi{\boldsymbol{i}} \def\bfj{\boldsymbol{j}} \def\bfk{\boldsymbol{k}} \def\bflambda{\boldsymbol{\lambda}} \def\bfl{\boldsymbol{l}} \def\bfm{\boldsymbol{m}} \def\bfn{\boldsymbol{n}} \def\bfomega{\boldsymbol{\omega}} \def\bfone{\boldsymbol{1}} \def\bfo{\boldsymbol{o}} \def\bfpdd{\ddot{\bfp}} \def\bfpd{\dot{\bfp}} \def\bfphi{\boldsymbol{\phi}} \def\bfp{\boldsymbol{p}} \def\bfq{\boldsymbol{q}} \def\bfr{\boldsymbol{r}} \def\bfsigma{\boldsymbol{\sigma}} \def\bfs{\boldsymbol{s}} \def\bftau{\boldsymbol{\tau}} \def\bft{\boldsymbol{t}} \def\bfu{\boldsymbol{u}} \def\bfv{\boldsymbol{v}} \def\bfw{\boldsymbol{w}} \def\bfxi{\boldsymbol{\xi}} \def\bfx{\boldsymbol{x}} \def\bfy{\boldsymbol{y}} \def\bfzero{\boldsymbol{0}} \def\bfz{\boldsymbol{z}} \def\calA{\mathcal{A}} \def\calB{\mathcal{B}} \def\calC{\mathcal{C}} \def\calD{\mathcal{D}} \def\calE{\mathcal{E}} \def\calF{\mathcal{F}} \def\calG{\mathcal{G}} \def\calH{\mathcal{H}} \def\calI{\mathcal{I}} \def\calJ{\mathcal{J}} \def\calK{\mathcal{K}} \def\calL{\mathcal{L}} \def\calM{\mathcal{M}} \def\calN{\mathcal{N}} \def\calO{\mathcal{O}} \def\calP{\mathcal{P}} \def\calQ{\mathcal{Q}} \def\calR{\mathcal{R}} \def\calS{\mathcal{S}} \def\calT{\mathcal{T}} \def\calU{\mathcal{U}} \def\calV{\mathcal{V}} \def\calW{\mathcal{W}} \def\calX{\mathcal{X}} \def\calY{\mathcal{Y}} \def\calZ{\mathcal{Z}} \def\d#1{{\rm d}{#1}} \def\defeq{\stackrel{\mathrm{def}}{=}} \def\dim{\rm dim} \def\p{\boldsymbol{p}} \def\qdd{\ddot{\bfq}} \def\qd{\dot{\bfq}} \def\q{\boldsymbol{q}} \def\xdd{\ddot{x}} \def\xd{\dot{x}} \def\ydd{\ddot{y}} \def\yd{\dot{y}} \def\zdd{\ddot{z}} \def\zd{\dot{z}} m as the last coordinate of the variables vector x\def\LdG{\dot{L}_G} \def\Ld{\dot{L}} \def\bfA{\boldsymbol{A}} \def\bfB{\boldsymbol{B}} \def\bfC{\boldsymbol{C}} \def\bfD{\boldsymbol{D}} \def\bfE{\boldsymbol{E}} \def\bfF{\boldsymbol{F}} \def\bfG{\boldsymbol{G}} \def\bfH{\boldsymbol{H}} \def\bfI{\boldsymbol{I}} \def\bfJ{\boldsymbol{J}} \def\bfK{\boldsymbol{K}} \def\bfL{\boldsymbol{L}} \def\bfM{\boldsymbol{M}} \def\bfN{\boldsymbol{N}} \def\bfO{\boldsymbol{O}} \def\bfP{\boldsymbol{P}} \def\bfQ{\boldsymbol{Q}} \def\bfR{\boldsymbol{R}} \def\bfS{\boldsymbol{S}} \def\bfT{\boldsymbol{T}} \def\bfU{\boldsymbol{U}} \def\bfV{\boldsymbol{V}} \def\bfW{\boldsymbol{W}} \def\bfX{\boldsymbol{X}} \def\bfY{\boldsymbol{Y}} \def\bfZ{\boldsymbol{Z}} \def\bfalpha{\boldsymbol{\alpha}} \def\bfa{\boldsymbol{a}} \def\bfbeta{\boldsymbol{\beta}} \def\bfb{\boldsymbol{b}} \def\bfcd{\dot{\bfc}} \def\bfchi{\boldsymbol{\chi}} \def\bfc{\boldsymbol{c}} \def\bfd{\boldsymbol{d}} \def\bfe{\boldsymbol{e}} \def\bff{\boldsymbol{f}} \def\bfgamma{\boldsymbol{\gamma}} \def\bfg{\boldsymbol{g}} \def\bfh{\boldsymbol{h}} \def\bfi{\boldsymbol{i}} \def\bfj{\boldsymbol{j}} \def\bfk{\boldsymbol{k}} \def\bflambda{\boldsymbol{\lambda}} \def\bfl{\boldsymbol{l}} \def\bfm{\boldsymbol{m}} \def\bfn{\boldsymbol{n}} \def\bfomega{\boldsymbol{\omega}} \def\bfone{\boldsymbol{1}} \def\bfo{\boldsymbol{o}} \def\bfpdd{\ddot{\bfp}} \def\bfpd{\dot{\bfp}} \def\bfphi{\boldsymbol{\phi}} \def\bfp{\boldsymbol{p}} \def\bfq{\boldsymbol{q}} \def\bfr{\boldsymbol{r}} \def\bfsigma{\boldsymbol{\sigma}} \def\bfs{\boldsymbol{s}} \def\bftau{\boldsymbol{\tau}} \def\bft{\boldsymbol{t}} \def\bfu{\boldsymbol{u}} \def\bfv{\boldsymbol{v}} \def\bfw{\boldsymbol{w}} \def\bfxi{\boldsymbol{\xi}} \def\bfx{\boldsymbol{x}} \def\bfy{\boldsymbol{y}} \def\bfzero{\boldsymbol{0}} \def\bfz{\boldsymbol{z}} \def\calA{\mathcal{A}} \def\calB{\mathcal{B}} \def\calC{\mathcal{C}} \def\calD{\mathcal{D}} \def\calE{\mathcal{E}} \def\calF{\mathcal{F}} \def\calG{\mathcal{G}} \def\calH{\mathcal{H}} \def\calI{\mathcal{I}} \def\calJ{\mathcal{J}} \def\calK{\mathcal{K}} \def\calL{\mathcal{L}} \def\calM{\mathcal{M}} \def\calN{\mathcal{N}} \def\calO{\mathcal{O}} \def\calP{\mathcal{P}} \def\calQ{\mathcal{Q}} \def\calR{\mathcal{R}} \def\calS{\mathcal{S}} \def\calT{\mathcal{T}} \def\calU{\mathcal{U}} \def\calV{\mathcal{V}} \def\calW{\mathcal{W}} \def\calX{\mathcal{X}} \def\calY{\mathcal{Y}} \def\calZ{\mathcal{Z}} \def\d#1{{\rm d}{#1}} \def\defeq{\stackrel{\mathrm{def}}{=}} \def\dim{\rm dim} \def\p{\boldsymbol{p}} \def\qdd{\ddot{\bfq}} \def\qd{\dot{\bfq}} \def\q{\boldsymbol{q}} \def\xdd{\ddot{x}} \def\xd{\dot{x}} \def\ydd{\ddot{y}} \def\yd{\dot{y}} \def\zdd{\ddot{z}} \def\zd{\dot{z}} {\bf x} so that m=cx\def\LdG{\dot{L}_G} \def\Ld{\dot{L}} \def\bfA{\boldsymbol{A}} \def\bfB{\boldsymbol{B}} \def\bfC{\boldsymbol{C}} \def\bfD{\boldsymbol{D}} \def\bfE{\boldsymbol{E}} \def\bfF{\boldsymbol{F}} \def\bfG{\boldsymbol{G}} \def\bfH{\boldsymbol{H}} \def\bfI{\boldsymbol{I}} \def\bfJ{\boldsymbol{J}} \def\bfK{\boldsymbol{K}} \def\bfL{\boldsymbol{L}} \def\bfM{\boldsymbol{M}} \def\bfN{\boldsymbol{N}} \def\bfO{\boldsymbol{O}} \def\bfP{\boldsymbol{P}} \def\bfQ{\boldsymbol{Q}} \def\bfR{\boldsymbol{R}} \def\bfS{\boldsymbol{S}} \def\bfT{\boldsymbol{T}} \def\bfU{\boldsymbol{U}} \def\bfV{\boldsymbol{V}} \def\bfW{\boldsymbol{W}} \def\bfX{\boldsymbol{X}} \def\bfY{\boldsymbol{Y}} \def\bfZ{\boldsymbol{Z}} \def\bfalpha{\boldsymbol{\alpha}} \def\bfa{\boldsymbol{a}} \def\bfbeta{\boldsymbol{\beta}} \def\bfb{\boldsymbol{b}} \def\bfcd{\dot{\bfc}} \def\bfchi{\boldsymbol{\chi}} \def\bfc{\boldsymbol{c}} \def\bfd{\boldsymbol{d}} \def\bfe{\boldsymbol{e}} \def\bff{\boldsymbol{f}} \def\bfgamma{\boldsymbol{\gamma}} \def\bfg{\boldsymbol{g}} \def\bfh{\boldsymbol{h}} \def\bfi{\boldsymbol{i}} \def\bfj{\boldsymbol{j}} \def\bfk{\boldsymbol{k}} \def\bflambda{\boldsymbol{\lambda}} \def\bfl{\boldsymbol{l}} \def\bfm{\boldsymbol{m}} \def\bfn{\boldsymbol{n}} \def\bfomega{\boldsymbol{\omega}} \def\bfone{\boldsymbol{1}} \def\bfo{\boldsymbol{o}} \def\bfpdd{\ddot{\bfp}} \def\bfpd{\dot{\bfp}} \def\bfphi{\boldsymbol{\phi}} \def\bfp{\boldsymbol{p}} \def\bfq{\boldsymbol{q}} \def\bfr{\boldsymbol{r}} \def\bfsigma{\boldsymbol{\sigma}} \def\bfs{\boldsymbol{s}} \def\bftau{\boldsymbol{\tau}} \def\bft{\boldsymbol{t}} \def\bfu{\boldsymbol{u}} \def\bfv{\boldsymbol{v}} \def\bfw{\boldsymbol{w}} \def\bfxi{\boldsymbol{\xi}} \def\bfx{\boldsymbol{x}} \def\bfy{\boldsymbol{y}} \def\bfzero{\boldsymbol{0}} \def\bfz{\boldsymbol{z}} \def\calA{\mathcal{A}} \def\calB{\mathcal{B}} \def\calC{\mathcal{C}} \def\calD{\mathcal{D}} \def\calE{\mathcal{E}} \def\calF{\mathcal{F}} \def\calG{\mathcal{G}} \def\calH{\mathcal{H}} \def\calI{\mathcal{I}} \def\calJ{\mathcal{J}} \def\calK{\mathcal{K}} \def\calL{\mathcal{L}} \def\calM{\mathcal{M}} \def\calN{\mathcal{N}} \def\calO{\mathcal{O}} \def\calP{\mathcal{P}} \def\calQ{\mathcal{Q}} \def\calR{\mathcal{R}} \def\calS{\mathcal{S}} \def\calT{\mathcal{T}} \def\calU{\mathcal{U}} \def\calV{\mathcal{V}} \def\calW{\mathcal{W}} \def\calX{\mathcal{X}} \def\calY{\mathcal{Y}} \def\calZ{\mathcal{Z}} \def\d#1{{\rm d}{#1}} \def\defeq{\stackrel{\mathrm{def}}{=}} \def\dim{\rm dim} \def\p{\boldsymbol{p}} \def\qdd{\ddot{\bfq}} \def\qd{\dot{\bfq}} \def\q{\boldsymbol{q}} \def\xdd{\ddot{x}} \def\xd{\dot{x}} \def\ydd{\ddot{y}} \def\yd{\dot{y}} \def\zdd{\ddot{z}} \def\zd{\dot{z}} m = {\bf c}^\top {\bf x} with c=[0001]\def\LdG{\dot{L}_G} \def\Ld{\dot{L}} \def\bfA{\boldsymbol{A}} \def\bfB{\boldsymbol{B}} \def\bfC{\boldsymbol{C}} \def\bfD{\boldsymbol{D}} \def\bfE{\boldsymbol{E}} \def\bfF{\boldsymbol{F}} \def\bfG{\boldsymbol{G}} \def\bfH{\boldsymbol{H}} \def\bfI{\boldsymbol{I}} \def\bfJ{\boldsymbol{J}} \def\bfK{\boldsymbol{K}} \def\bfL{\boldsymbol{L}} \def\bfM{\boldsymbol{M}} \def\bfN{\boldsymbol{N}} \def\bfO{\boldsymbol{O}} \def\bfP{\boldsymbol{P}} \def\bfQ{\boldsymbol{Q}} \def\bfR{\boldsymbol{R}} \def\bfS{\boldsymbol{S}} \def\bfT{\boldsymbol{T}} \def\bfU{\boldsymbol{U}} \def\bfV{\boldsymbol{V}} \def\bfW{\boldsymbol{W}} \def\bfX{\boldsymbol{X}} \def\bfY{\boldsymbol{Y}} \def\bfZ{\boldsymbol{Z}} \def\bfalpha{\boldsymbol{\alpha}} \def\bfa{\boldsymbol{a}} \def\bfbeta{\boldsymbol{\beta}} \def\bfb{\boldsymbol{b}} \def\bfcd{\dot{\bfc}} \def\bfchi{\boldsymbol{\chi}} \def\bfc{\boldsymbol{c}} \def\bfd{\boldsymbol{d}} \def\bfe{\boldsymbol{e}} \def\bff{\boldsymbol{f}} \def\bfgamma{\boldsymbol{\gamma}} \def\bfg{\boldsymbol{g}} \def\bfh{\boldsymbol{h}} \def\bfi{\boldsymbol{i}} \def\bfj{\boldsymbol{j}} \def\bfk{\boldsymbol{k}} \def\bflambda{\boldsymbol{\lambda}} \def\bfl{\boldsymbol{l}} \def\bfm{\boldsymbol{m}} \def\bfn{\boldsymbol{n}} \def\bfomega{\boldsymbol{\omega}} \def\bfone{\boldsymbol{1}} \def\bfo{\boldsymbol{o}} \def\bfpdd{\ddot{\bfp}} \def\bfpd{\dot{\bfp}} \def\bfphi{\boldsymbol{\phi}} \def\bfp{\boldsymbol{p}} \def\bfq{\boldsymbol{q}} \def\bfr{\boldsymbol{r}} \def\bfsigma{\boldsymbol{\sigma}} \def\bfs{\boldsymbol{s}} \def\bftau{\boldsymbol{\tau}} \def\bft{\boldsymbol{t}} \def\bfu{\boldsymbol{u}} \def\bfv{\boldsymbol{v}} \def\bfw{\boldsymbol{w}} \def\bfxi{\boldsymbol{\xi}} \def\bfx{\boldsymbol{x}} \def\bfy{\boldsymbol{y}} \def\bfzero{\boldsymbol{0}} \def\bfz{\boldsymbol{z}} \def\calA{\mathcal{A}} \def\calB{\mathcal{B}} \def\calC{\mathcal{C}} \def\calD{\mathcal{D}} \def\calE{\mathcal{E}} \def\calF{\mathcal{F}} \def\calG{\mathcal{G}} \def\calH{\mathcal{H}} \def\calI{\mathcal{I}} \def\calJ{\mathcal{J}} \def\calK{\mathcal{K}} \def\calL{\mathcal{L}} \def\calM{\mathcal{M}} \def\calN{\mathcal{N}} \def\calO{\mathcal{O}} \def\calP{\mathcal{P}} \def\calQ{\mathcal{Q}} \def\calR{\mathcal{R}} \def\calS{\mathcal{S}} \def\calT{\mathcal{T}} \def\calU{\mathcal{U}} \def\calV{\mathcal{V}} \def\calW{\mathcal{W}} \def\calX{\mathcal{X}} \def\calY{\mathcal{Y}} \def\calZ{\mathcal{Z}} \def\d#1{{\rm d}{#1}} \def\defeq{\stackrel{\mathrm{def}}{=}} \def\dim{\rm dim} \def\p{\boldsymbol{p}} \def\qdd{\ddot{\bfq}} \def\qd{\dot{\bfq}} \def\q{\boldsymbol{q}} \def\xdd{\ddot{x}} \def\xd{\dot{x}} \def\ydd{\ddot{y}} \def\yd{\dot{y}} \def\zdd{\ddot{z}} \def\zd{\dot{z}} {\bf c} = [0 \, 0 \, \ldots \, 0 \, 1]^\top. Next, we stack the scalars ai\def\LdG{\dot{L}_G} \def\Ld{\dot{L}} \def\bfA{\boldsymbol{A}} \def\bfB{\boldsymbol{B}} \def\bfC{\boldsymbol{C}} \def\bfD{\boldsymbol{D}} \def\bfE{\boldsymbol{E}} \def\bfF{\boldsymbol{F}} \def\bfG{\boldsymbol{G}} \def\bfH{\boldsymbol{H}} \def\bfI{\boldsymbol{I}} \def\bfJ{\boldsymbol{J}} \def\bfK{\boldsymbol{K}} \def\bfL{\boldsymbol{L}} \def\bfM{\boldsymbol{M}} \def\bfN{\boldsymbol{N}} \def\bfO{\boldsymbol{O}} \def\bfP{\boldsymbol{P}} \def\bfQ{\boldsymbol{Q}} \def\bfR{\boldsymbol{R}} \def\bfS{\boldsymbol{S}} \def\bfT{\boldsymbol{T}} \def\bfU{\boldsymbol{U}} \def\bfV{\boldsymbol{V}} \def\bfW{\boldsymbol{W}} \def\bfX{\boldsymbol{X}} \def\bfY{\boldsymbol{Y}} \def\bfZ{\boldsymbol{Z}} \def\bfalpha{\boldsymbol{\alpha}} \def\bfa{\boldsymbol{a}} \def\bfbeta{\boldsymbol{\beta}} \def\bfb{\boldsymbol{b}} \def\bfcd{\dot{\bfc}} \def\bfchi{\boldsymbol{\chi}} \def\bfc{\boldsymbol{c}} \def\bfd{\boldsymbol{d}} \def\bfe{\boldsymbol{e}} \def\bff{\boldsymbol{f}} \def\bfgamma{\boldsymbol{\gamma}} \def\bfg{\boldsymbol{g}} \def\bfh{\boldsymbol{h}} \def\bfi{\boldsymbol{i}} \def\bfj{\boldsymbol{j}} \def\bfk{\boldsymbol{k}} \def\bflambda{\boldsymbol{\lambda}} \def\bfl{\boldsymbol{l}} \def\bfm{\boldsymbol{m}} \def\bfn{\boldsymbol{n}} \def\bfomega{\boldsymbol{\omega}} \def\bfone{\boldsymbol{1}} \def\bfo{\boldsymbol{o}} \def\bfpdd{\ddot{\bfp}} \def\bfpd{\dot{\bfp}} \def\bfphi{\boldsymbol{\phi}} \def\bfp{\boldsymbol{p}} \def\bfq{\boldsymbol{q}} \def\bfr{\boldsymbol{r}} \def\bfsigma{\boldsymbol{\sigma}} \def\bfs{\boldsymbol{s}} \def\bftau{\boldsymbol{\tau}} \def\bft{\boldsymbol{t}} \def\bfu{\boldsymbol{u}} \def\bfv{\boldsymbol{v}} \def\bfw{\boldsymbol{w}} \def\bfxi{\boldsymbol{\xi}} \def\bfx{\boldsymbol{x}} \def\bfy{\boldsymbol{y}} \def\bfzero{\boldsymbol{0}} \def\bfz{\boldsymbol{z}} \def\calA{\mathcal{A}} \def\calB{\mathcal{B}} \def\calC{\mathcal{C}} \def\calD{\mathcal{D}} \def\calE{\mathcal{E}} \def\calF{\mathcal{F}} \def\calG{\mathcal{G}} \def\calH{\mathcal{H}} \def\calI{\mathcal{I}} \def\calJ{\mathcal{J}} \def\calK{\mathcal{K}} \def\calL{\mathcal{L}} \def\calM{\mathcal{M}} \def\calN{\mathcal{N}} \def\calO{\mathcal{O}} \def\calP{\mathcal{P}} \def\calQ{\mathcal{Q}} \def\calR{\mathcal{R}} \def\calS{\mathcal{S}} \def\calT{\mathcal{T}} \def\calU{\mathcal{U}} \def\calV{\mathcal{V}} \def\calW{\mathcal{W}} \def\calX{\mathcal{X}} \def\calY{\mathcal{Y}} \def\calZ{\mathcal{Z}} \def\d#1{{\rm d}{#1}} \def\defeq{\stackrel{\mathrm{def}}{=}} \def\dim{\rm dim} \def\p{\boldsymbol{p}} \def\qdd{\ddot{\bfq}} \def\qd{\dot{\bfq}} \def\q{\boldsymbol{q}} \def\xdd{\ddot{x}} \def\xd{\dot{x}} \def\ydd{\ddot{y}} \def\yd{\dot{y}} \def\zdd{\ddot{z}} \def\zd{\dot{z}} a_i into a vector a\def\LdG{\dot{L}_G} \def\Ld{\dot{L}} \def\bfA{\boldsymbol{A}} \def\bfB{\boldsymbol{B}} \def\bfC{\boldsymbol{C}} \def\bfD{\boldsymbol{D}} \def\bfE{\boldsymbol{E}} \def\bfF{\boldsymbol{F}} \def\bfG{\boldsymbol{G}} \def\bfH{\boldsymbol{H}} \def\bfI{\boldsymbol{I}} \def\bfJ{\boldsymbol{J}} \def\bfK{\boldsymbol{K}} \def\bfL{\boldsymbol{L}} \def\bfM{\boldsymbol{M}} \def\bfN{\boldsymbol{N}} \def\bfO{\boldsymbol{O}} \def\bfP{\boldsymbol{P}} \def\bfQ{\boldsymbol{Q}} \def\bfR{\boldsymbol{R}} \def\bfS{\boldsymbol{S}} \def\bfT{\boldsymbol{T}} \def\bfU{\boldsymbol{U}} \def\bfV{\boldsymbol{V}} \def\bfW{\boldsymbol{W}} \def\bfX{\boldsymbol{X}} \def\bfY{\boldsymbol{Y}} \def\bfZ{\boldsymbol{Z}} \def\bfalpha{\boldsymbol{\alpha}} \def\bfa{\boldsymbol{a}} \def\bfbeta{\boldsymbol{\beta}} \def\bfb{\boldsymbol{b}} \def\bfcd{\dot{\bfc}} \def\bfchi{\boldsymbol{\chi}} \def\bfc{\boldsymbol{c}} \def\bfd{\boldsymbol{d}} \def\bfe{\boldsymbol{e}} \def\bff{\boldsymbol{f}} \def\bfgamma{\boldsymbol{\gamma}} \def\bfg{\boldsymbol{g}} \def\bfh{\boldsymbol{h}} \def\bfi{\boldsymbol{i}} \def\bfj{\boldsymbol{j}} \def\bfk{\boldsymbol{k}} \def\bflambda{\boldsymbol{\lambda}} \def\bfl{\boldsymbol{l}} \def\bfm{\boldsymbol{m}} \def\bfn{\boldsymbol{n}} \def\bfomega{\boldsymbol{\omega}} \def\bfone{\boldsymbol{1}} \def\bfo{\boldsymbol{o}} \def\bfpdd{\ddot{\bfp}} \def\bfpd{\dot{\bfp}} \def\bfphi{\boldsymbol{\phi}} \def\bfp{\boldsymbol{p}} \def\bfq{\boldsymbol{q}} \def\bfr{\boldsymbol{r}} \def\bfsigma{\boldsymbol{\sigma}} \def\bfs{\boldsymbol{s}} \def\bftau{\boldsymbol{\tau}} \def\bft{\boldsymbol{t}} \def\bfu{\boldsymbol{u}} \def\bfv{\boldsymbol{v}} \def\bfw{\boldsymbol{w}} \def\bfxi{\boldsymbol{\xi}} \def\bfx{\boldsymbol{x}} \def\bfy{\boldsymbol{y}} \def\bfzero{\boldsymbol{0}} \def\bfz{\boldsymbol{z}} \def\calA{\mathcal{A}} \def\calB{\mathcal{B}} \def\calC{\mathcal{C}} \def\calD{\mathcal{D}} \def\calE{\mathcal{E}} \def\calF{\mathcal{F}} \def\calG{\mathcal{G}} \def\calH{\mathcal{H}} \def\calI{\mathcal{I}} \def\calJ{\mathcal{J}} \def\calK{\mathcal{K}} \def\calL{\mathcal{L}} \def\calM{\mathcal{M}} \def\calN{\mathcal{N}} \def\calO{\mathcal{O}} \def\calP{\mathcal{P}} \def\calQ{\mathcal{Q}} \def\calR{\mathcal{R}} \def\calS{\mathcal{S}} \def\calT{\mathcal{T}} \def\calU{\mathcal{U}} \def\calV{\mathcal{V}} \def\calW{\mathcal{W}} \def\calX{\mathcal{X}} \def\calY{\mathcal{Y}} \def\calZ{\mathcal{Z}} \def\d#1{{\rm d}{#1}} \def\defeq{\stackrel{\mathrm{def}}{=}} \def\dim{\rm dim} \def\p{\boldsymbol{p}} \def\qdd{\ddot{\bfq}} \def\qd{\dot{\bfq}} \def\q{\boldsymbol{q}} \def\xdd{\ddot{x}} \def\xd{\dot{x}} \def\ydd{\ddot{y}} \def\yd{\dot{y}} \def\zdd{\ddot{z}} \def\zd{\dot{z}} \bf a, and the vectors bi\def\LdG{\dot{L}_G} \def\Ld{\dot{L}} \def\bfA{\boldsymbol{A}} \def\bfB{\boldsymbol{B}} \def\bfC{\boldsymbol{C}} \def\bfD{\boldsymbol{D}} \def\bfE{\boldsymbol{E}} \def\bfF{\boldsymbol{F}} \def\bfG{\boldsymbol{G}} \def\bfH{\boldsymbol{H}} \def\bfI{\boldsymbol{I}} \def\bfJ{\boldsymbol{J}} \def\bfK{\boldsymbol{K}} \def\bfL{\boldsymbol{L}} \def\bfM{\boldsymbol{M}} \def\bfN{\boldsymbol{N}} \def\bfO{\boldsymbol{O}} \def\bfP{\boldsymbol{P}} \def\bfQ{\boldsymbol{Q}} \def\bfR{\boldsymbol{R}} \def\bfS{\boldsymbol{S}} \def\bfT{\boldsymbol{T}} \def\bfU{\boldsymbol{U}} \def\bfV{\boldsymbol{V}} \def\bfW{\boldsymbol{W}} \def\bfX{\boldsymbol{X}} \def\bfY{\boldsymbol{Y}} \def\bfZ{\boldsymbol{Z}} \def\bfalpha{\boldsymbol{\alpha}} \def\bfa{\boldsymbol{a}} \def\bfbeta{\boldsymbol{\beta}} \def\bfb{\boldsymbol{b}} \def\bfcd{\dot{\bfc}} \def\bfchi{\boldsymbol{\chi}} \def\bfc{\boldsymbol{c}} \def\bfd{\boldsymbol{d}} \def\bfe{\boldsymbol{e}} \def\bff{\boldsymbol{f}} \def\bfgamma{\boldsymbol{\gamma}} \def\bfg{\boldsymbol{g}} \def\bfh{\boldsymbol{h}} \def\bfi{\boldsymbol{i}} \def\bfj{\boldsymbol{j}} \def\bfk{\boldsymbol{k}} \def\bflambda{\boldsymbol{\lambda}} \def\bfl{\boldsymbol{l}} \def\bfm{\boldsymbol{m}} \def\bfn{\boldsymbol{n}} \def\bfomega{\boldsymbol{\omega}} \def\bfone{\boldsymbol{1}} \def\bfo{\boldsymbol{o}} \def\bfpdd{\ddot{\bfp}} \def\bfpd{\dot{\bfp}} \def\bfphi{\boldsymbol{\phi}} \def\bfp{\boldsymbol{p}} \def\bfq{\boldsymbol{q}} \def\bfr{\boldsymbol{r}} \def\bfsigma{\boldsymbol{\sigma}} \def\bfs{\boldsymbol{s}} \def\bftau{\boldsymbol{\tau}} \def\bft{\boldsymbol{t}} \def\bfu{\boldsymbol{u}} \def\bfv{\boldsymbol{v}} \def\bfw{\boldsymbol{w}} \def\bfxi{\boldsymbol{\xi}} \def\bfx{\boldsymbol{x}} \def\bfy{\boldsymbol{y}} \def\bfzero{\boldsymbol{0}} \def\bfz{\boldsymbol{z}} \def\calA{\mathcal{A}} \def\calB{\mathcal{B}} \def\calC{\mathcal{C}} \def\calD{\mathcal{D}} \def\calE{\mathcal{E}} \def\calF{\mathcal{F}} \def\calG{\mathcal{G}} \def\calH{\mathcal{H}} \def\calI{\mathcal{I}} \def\calJ{\mathcal{J}} \def\calK{\mathcal{K}} \def\calL{\mathcal{L}} \def\calM{\mathcal{M}} \def\calN{\mathcal{N}} \def\calO{\mathcal{O}} \def\calP{\mathcal{P}} \def\calQ{\mathcal{Q}} \def\calR{\mathcal{R}} \def\calS{\mathcal{S}} \def\calT{\mathcal{T}} \def\calU{\mathcal{U}} \def\calV{\mathcal{V}} \def\calW{\mathcal{W}} \def\calX{\mathcal{X}} \def\calY{\mathcal{Y}} \def\calZ{\mathcal{Z}} \def\d#1{{\rm d}{#1}} \def\defeq{\stackrel{\mathrm{def}}{=}} \def\dim{\rm dim} \def\p{\boldsymbol{p}} \def\qdd{\ddot{\bfq}} \def\qd{\dot{\bfq}} \def\q{\boldsymbol{q}} \def\xdd{\ddot{x}} \def\xd{\dot{x}} \def\ydd{\ddot{y}} \def\yd{\dot{y}} \def\zdd{\ddot{z}} \def\zd{\dot{z}} {\bf b}_i into a matrix B\def\LdG{\dot{L}_G} \def\Ld{\dot{L}} \def\bfA{\boldsymbol{A}} \def\bfB{\boldsymbol{B}} \def\bfC{\boldsymbol{C}} \def\bfD{\boldsymbol{D}} \def\bfE{\boldsymbol{E}} \def\bfF{\boldsymbol{F}} \def\bfG{\boldsymbol{G}} \def\bfH{\boldsymbol{H}} \def\bfI{\boldsymbol{I}} \def\bfJ{\boldsymbol{J}} \def\bfK{\boldsymbol{K}} \def\bfL{\boldsymbol{L}} \def\bfM{\boldsymbol{M}} \def\bfN{\boldsymbol{N}} \def\bfO{\boldsymbol{O}} \def\bfP{\boldsymbol{P}} \def\bfQ{\boldsymbol{Q}} \def\bfR{\boldsymbol{R}} \def\bfS{\boldsymbol{S}} \def\bfT{\boldsymbol{T}} \def\bfU{\boldsymbol{U}} \def\bfV{\boldsymbol{V}} \def\bfW{\boldsymbol{W}} \def\bfX{\boldsymbol{X}} \def\bfY{\boldsymbol{Y}} \def\bfZ{\boldsymbol{Z}} \def\bfalpha{\boldsymbol{\alpha}} \def\bfa{\boldsymbol{a}} \def\bfbeta{\boldsymbol{\beta}} \def\bfb{\boldsymbol{b}} \def\bfcd{\dot{\bfc}} \def\bfchi{\boldsymbol{\chi}} \def\bfc{\boldsymbol{c}} \def\bfd{\boldsymbol{d}} \def\bfe{\boldsymbol{e}} \def\bff{\boldsymbol{f}} \def\bfgamma{\boldsymbol{\gamma}} \def\bfg{\boldsymbol{g}} \def\bfh{\boldsymbol{h}} \def\bfi{\boldsymbol{i}} \def\bfj{\boldsymbol{j}} \def\bfk{\boldsymbol{k}} \def\bflambda{\boldsymbol{\lambda}} \def\bfl{\boldsymbol{l}} \def\bfm{\boldsymbol{m}} \def\bfn{\boldsymbol{n}} \def\bfomega{\boldsymbol{\omega}} \def\bfone{\boldsymbol{1}} \def\bfo{\boldsymbol{o}} \def\bfpdd{\ddot{\bfp}} \def\bfpd{\dot{\bfp}} \def\bfphi{\boldsymbol{\phi}} \def\bfp{\boldsymbol{p}} \def\bfq{\boldsymbol{q}} \def\bfr{\boldsymbol{r}} \def\bfsigma{\boldsymbol{\sigma}} \def\bfs{\boldsymbol{s}} \def\bftau{\boldsymbol{\tau}} \def\bft{\boldsymbol{t}} \def\bfu{\boldsymbol{u}} \def\bfv{\boldsymbol{v}} \def\bfw{\boldsymbol{w}} \def\bfxi{\boldsymbol{\xi}} \def\bfx{\boldsymbol{x}} \def\bfy{\boldsymbol{y}} \def\bfzero{\boldsymbol{0}} \def\bfz{\boldsymbol{z}} \def\calA{\mathcal{A}} \def\calB{\mathcal{B}} \def\calC{\mathcal{C}} \def\calD{\mathcal{D}} \def\calE{\mathcal{E}} \def\calF{\mathcal{F}} \def\calG{\mathcal{G}} \def\calH{\mathcal{H}} \def\calI{\mathcal{I}} \def\calJ{\mathcal{J}} \def\calK{\mathcal{K}} \def\calL{\mathcal{L}} \def\calM{\mathcal{M}} \def\calN{\mathcal{N}} \def\calO{\mathcal{O}} \def\calP{\mathcal{P}} \def\calQ{\mathcal{Q}} \def\calR{\mathcal{R}} \def\calS{\mathcal{S}} \def\calT{\mathcal{T}} \def\calU{\mathcal{U}} \def\calV{\mathcal{V}} \def\calW{\mathcal{W}} \def\calX{\mathcal{X}} \def\calY{\mathcal{Y}} \def\calZ{\mathcal{Z}} \def\d#1{{\rm d}{#1}} \def\defeq{\stackrel{\mathrm{def}}{=}} \def\dim{\rm dim} \def\p{\boldsymbol{p}} \def\qdd{\ddot{\bfq}} \def\qd{\dot{\bfq}} \def\q{\boldsymbol{q}} \def\xdd{\ddot{x}} \def\xd{\dot{x}} \def\ydd{\ddot{y}} \def\yd{\dot{y}} \def\zdd{\ddot{z}} \def\zd{\dot{z}} \bf B. The LP problem becomes:

minimizecxs.t.a+Bx0xminxxmax\def\LdG{\dot{L}_G} \def\Ld{\dot{L}} \def\bfA{\boldsymbol{A}} \def\bfB{\boldsymbol{B}} \def\bfC{\boldsymbol{C}} \def\bfD{\boldsymbol{D}} \def\bfE{\boldsymbol{E}} \def\bfF{\boldsymbol{F}} \def\bfG{\boldsymbol{G}} \def\bfH{\boldsymbol{H}} \def\bfI{\boldsymbol{I}} \def\bfJ{\boldsymbol{J}} \def\bfK{\boldsymbol{K}} \def\bfL{\boldsymbol{L}} \def\bfM{\boldsymbol{M}} \def\bfN{\boldsymbol{N}} \def\bfO{\boldsymbol{O}} \def\bfP{\boldsymbol{P}} \def\bfQ{\boldsymbol{Q}} \def\bfR{\boldsymbol{R}} \def\bfS{\boldsymbol{S}} \def\bfT{\boldsymbol{T}} \def\bfU{\boldsymbol{U}} \def\bfV{\boldsymbol{V}} \def\bfW{\boldsymbol{W}} \def\bfX{\boldsymbol{X}} \def\bfY{\boldsymbol{Y}} \def\bfZ{\boldsymbol{Z}} \def\bfalpha{\boldsymbol{\alpha}} \def\bfa{\boldsymbol{a}} \def\bfbeta{\boldsymbol{\beta}} \def\bfb{\boldsymbol{b}} \def\bfcd{\dot{\bfc}} \def\bfchi{\boldsymbol{\chi}} \def\bfc{\boldsymbol{c}} \def\bfd{\boldsymbol{d}} \def\bfe{\boldsymbol{e}} \def\bff{\boldsymbol{f}} \def\bfgamma{\boldsymbol{\gamma}} \def\bfg{\boldsymbol{g}} \def\bfh{\boldsymbol{h}} \def\bfi{\boldsymbol{i}} \def\bfj{\boldsymbol{j}} \def\bfk{\boldsymbol{k}} \def\bflambda{\boldsymbol{\lambda}} \def\bfl{\boldsymbol{l}} \def\bfm{\boldsymbol{m}} \def\bfn{\boldsymbol{n}} \def\bfomega{\boldsymbol{\omega}} \def\bfone{\boldsymbol{1}} \def\bfo{\boldsymbol{o}} \def\bfpdd{\ddot{\bfp}} \def\bfpd{\dot{\bfp}} \def\bfphi{\boldsymbol{\phi}} \def\bfp{\boldsymbol{p}} \def\bfq{\boldsymbol{q}} \def\bfr{\boldsymbol{r}} \def\bfsigma{\boldsymbol{\sigma}} \def\bfs{\boldsymbol{s}} \def\bftau{\boldsymbol{\tau}} \def\bft{\boldsymbol{t}} \def\bfu{\boldsymbol{u}} \def\bfv{\boldsymbol{v}} \def\bfw{\boldsymbol{w}} \def\bfxi{\boldsymbol{\xi}} \def\bfx{\boldsymbol{x}} \def\bfy{\boldsymbol{y}} \def\bfzero{\boldsymbol{0}} \def\bfz{\boldsymbol{z}} \def\calA{\mathcal{A}} \def\calB{\mathcal{B}} \def\calC{\mathcal{C}} \def\calD{\mathcal{D}} \def\calE{\mathcal{E}} \def\calF{\mathcal{F}} \def\calG{\mathcal{G}} \def\calH{\mathcal{H}} \def\calI{\mathcal{I}} \def\calJ{\mathcal{J}} \def\calK{\mathcal{K}} \def\calL{\mathcal{L}} \def\calM{\mathcal{M}} \def\calN{\mathcal{N}} \def\calO{\mathcal{O}} \def\calP{\mathcal{P}} \def\calQ{\mathcal{Q}} \def\calR{\mathcal{R}} \def\calS{\mathcal{S}} \def\calT{\mathcal{T}} \def\calU{\mathcal{U}} \def\calV{\mathcal{V}} \def\calW{\mathcal{W}} \def\calX{\mathcal{X}} \def\calY{\mathcal{Y}} \def\calZ{\mathcal{Z}} \def\d#1{{\rm d}{#1}} \def\defeq{\stackrel{\mathrm{def}}{=}} \def\dim{\rm dim} \def\p{\boldsymbol{p}} \def\qdd{\ddot{\bfq}} \def\qd{\dot{\bfq}} \def\q{\boldsymbol{q}} \def\xdd{\ddot{x}} \def\xd{\dot{x}} \def\ydd{\ddot{y}} \def\yd{\dot{y}} \def\zdd{\ddot{z}} \def\zd{\dot{z}} \begin{array}{rl} \textrm{minimize} & {\bf c}^\top {\bf x} \\ \textrm{s.t.} & {\bf a} + {\bf B} {\bf x} \leq {\bf 0} \\ & x_{\mathit{min}} \leq {\bf x} \leq x_{\mathit{max}} \end{array}

Where the vector notation ab\def\LdG{\dot{L}_G} \def\Ld{\dot{L}} \def\bfA{\boldsymbol{A}} \def\bfB{\boldsymbol{B}} \def\bfC{\boldsymbol{C}} \def\bfD{\boldsymbol{D}} \def\bfE{\boldsymbol{E}} \def\bfF{\boldsymbol{F}} \def\bfG{\boldsymbol{G}} \def\bfH{\boldsymbol{H}} \def\bfI{\boldsymbol{I}} \def\bfJ{\boldsymbol{J}} \def\bfK{\boldsymbol{K}} \def\bfL{\boldsymbol{L}} \def\bfM{\boldsymbol{M}} \def\bfN{\boldsymbol{N}} \def\bfO{\boldsymbol{O}} \def\bfP{\boldsymbol{P}} \def\bfQ{\boldsymbol{Q}} \def\bfR{\boldsymbol{R}} \def\bfS{\boldsymbol{S}} \def\bfT{\boldsymbol{T}} \def\bfU{\boldsymbol{U}} \def\bfV{\boldsymbol{V}} \def\bfW{\boldsymbol{W}} \def\bfX{\boldsymbol{X}} \def\bfY{\boldsymbol{Y}} \def\bfZ{\boldsymbol{Z}} \def\bfalpha{\boldsymbol{\alpha}} \def\bfa{\boldsymbol{a}} \def\bfbeta{\boldsymbol{\beta}} \def\bfb{\boldsymbol{b}} \def\bfcd{\dot{\bfc}} \def\bfchi{\boldsymbol{\chi}} \def\bfc{\boldsymbol{c}} \def\bfd{\boldsymbol{d}} \def\bfe{\boldsymbol{e}} \def\bff{\boldsymbol{f}} \def\bfgamma{\boldsymbol{\gamma}} \def\bfg{\boldsymbol{g}} \def\bfh{\boldsymbol{h}} \def\bfi{\boldsymbol{i}} \def\bfj{\boldsymbol{j}} \def\bfk{\boldsymbol{k}} \def\bflambda{\boldsymbol{\lambda}} \def\bfl{\boldsymbol{l}} \def\bfm{\boldsymbol{m}} \def\bfn{\boldsymbol{n}} \def\bfomega{\boldsymbol{\omega}} \def\bfone{\boldsymbol{1}} \def\bfo{\boldsymbol{o}} \def\bfpdd{\ddot{\bfp}} \def\bfpd{\dot{\bfp}} \def\bfphi{\boldsymbol{\phi}} \def\bfp{\boldsymbol{p}} \def\bfq{\boldsymbol{q}} \def\bfr{\boldsymbol{r}} \def\bfsigma{\boldsymbol{\sigma}} \def\bfs{\boldsymbol{s}} \def\bftau{\boldsymbol{\tau}} \def\bft{\boldsymbol{t}} \def\bfu{\boldsymbol{u}} \def\bfv{\boldsymbol{v}} \def\bfw{\boldsymbol{w}} \def\bfxi{\boldsymbol{\xi}} \def\bfx{\boldsymbol{x}} \def\bfy{\boldsymbol{y}} \def\bfzero{\boldsymbol{0}} \def\bfz{\boldsymbol{z}} \def\calA{\mathcal{A}} \def\calB{\mathcal{B}} \def\calC{\mathcal{C}} \def\calD{\mathcal{D}} \def\calE{\mathcal{E}} \def\calF{\mathcal{F}} \def\calG{\mathcal{G}} \def\calH{\mathcal{H}} \def\calI{\mathcal{I}} \def\calJ{\mathcal{J}} \def\calK{\mathcal{K}} \def\calL{\mathcal{L}} \def\calM{\mathcal{M}} \def\calN{\mathcal{N}} \def\calO{\mathcal{O}} \def\calP{\mathcal{P}} \def\calQ{\mathcal{Q}} \def\calR{\mathcal{R}} \def\calS{\mathcal{S}} \def\calT{\mathcal{T}} \def\calU{\mathcal{U}} \def\calV{\mathcal{V}} \def\calW{\mathcal{W}} \def\calX{\mathcal{X}} \def\calY{\mathcal{Y}} \def\calZ{\mathcal{Z}} \def\d#1{{\rm d}{#1}} \def\defeq{\stackrel{\mathrm{def}}{=}} \def\dim{\rm dim} \def\p{\boldsymbol{p}} \def\qdd{\ddot{\bfq}} \def\qd{\dot{\bfq}} \def\q{\boldsymbol{q}} \def\xdd{\ddot{x}} \def\xd{\dot{x}} \def\ydd{\ddot{y}} \def\yd{\dot{y}} \def\zdd{\ddot{z}} \def\zd{\dot{z}} {\bf a} \leq {\bf b} means i,aibi\def\LdG{\dot{L}_G} \def\Ld{\dot{L}} \def\bfA{\boldsymbol{A}} \def\bfB{\boldsymbol{B}} \def\bfC{\boldsymbol{C}} \def\bfD{\boldsymbol{D}} \def\bfE{\boldsymbol{E}} \def\bfF{\boldsymbol{F}} \def\bfG{\boldsymbol{G}} \def\bfH{\boldsymbol{H}} \def\bfI{\boldsymbol{I}} \def\bfJ{\boldsymbol{J}} \def\bfK{\boldsymbol{K}} \def\bfL{\boldsymbol{L}} \def\bfM{\boldsymbol{M}} \def\bfN{\boldsymbol{N}} \def\bfO{\boldsymbol{O}} \def\bfP{\boldsymbol{P}} \def\bfQ{\boldsymbol{Q}} \def\bfR{\boldsymbol{R}} \def\bfS{\boldsymbol{S}} \def\bfT{\boldsymbol{T}} \def\bfU{\boldsymbol{U}} \def\bfV{\boldsymbol{V}} \def\bfW{\boldsymbol{W}} \def\bfX{\boldsymbol{X}} \def\bfY{\boldsymbol{Y}} \def\bfZ{\boldsymbol{Z}} \def\bfalpha{\boldsymbol{\alpha}} \def\bfa{\boldsymbol{a}} \def\bfbeta{\boldsymbol{\beta}} \def\bfb{\boldsymbol{b}} \def\bfcd{\dot{\bfc}} \def\bfchi{\boldsymbol{\chi}} \def\bfc{\boldsymbol{c}} \def\bfd{\boldsymbol{d}} \def\bfe{\boldsymbol{e}} \def\bff{\boldsymbol{f}} \def\bfgamma{\boldsymbol{\gamma}} \def\bfg{\boldsymbol{g}} \def\bfh{\boldsymbol{h}} \def\bfi{\boldsymbol{i}} \def\bfj{\boldsymbol{j}} \def\bfk{\boldsymbol{k}} \def\bflambda{\boldsymbol{\lambda}} \def\bfl{\boldsymbol{l}} \def\bfm{\boldsymbol{m}} \def\bfn{\boldsymbol{n}} \def\bfomega{\boldsymbol{\omega}} \def\bfone{\boldsymbol{1}} \def\bfo{\boldsymbol{o}} \def\bfpdd{\ddot{\bfp}} \def\bfpd{\dot{\bfp}} \def\bfphi{\boldsymbol{\phi}} \def\bfp{\boldsymbol{p}} \def\bfq{\boldsymbol{q}} \def\bfr{\boldsymbol{r}} \def\bfsigma{\boldsymbol{\sigma}} \def\bfs{\boldsymbol{s}} \def\bftau{\boldsymbol{\tau}} \def\bft{\boldsymbol{t}} \def\bfu{\boldsymbol{u}} \def\bfv{\boldsymbol{v}} \def\bfw{\boldsymbol{w}} \def\bfxi{\boldsymbol{\xi}} \def\bfx{\boldsymbol{x}} \def\bfy{\boldsymbol{y}} \def\bfzero{\boldsymbol{0}} \def\bfz{\boldsymbol{z}} \def\calA{\mathcal{A}} \def\calB{\mathcal{B}} \def\calC{\mathcal{C}} \def\calD{\mathcal{D}} \def\calE{\mathcal{E}} \def\calF{\mathcal{F}} \def\calG{\mathcal{G}} \def\calH{\mathcal{H}} \def\calI{\mathcal{I}} \def\calJ{\mathcal{J}} \def\calK{\mathcal{K}} \def\calL{\mathcal{L}} \def\calM{\mathcal{M}} \def\calN{\mathcal{N}} \def\calO{\mathcal{O}} \def\calP{\mathcal{P}} \def\calQ{\mathcal{Q}} \def\calR{\mathcal{R}} \def\calS{\mathcal{S}} \def\calT{\mathcal{T}} \def\calU{\mathcal{U}} \def\calV{\mathcal{V}} \def\calW{\mathcal{W}} \def\calX{\mathcal{X}} \def\calY{\mathcal{Y}} \def\calZ{\mathcal{Z}} \def\d#1{{\rm d}{#1}} \def\defeq{\stackrel{\mathrm{def}}{=}} \def\dim{\rm dim} \def\p{\boldsymbol{p}} \def\qdd{\ddot{\bfq}} \def\qd{\dot{\bfq}} \def\q{\boldsymbol{q}} \def\xdd{\ddot{x}} \def\xd{\dot{x}} \def\ydd{\ddot{y}} \def\yd{\dot{y}} \def\zdd{\ddot{z}} \def\zd{\dot{z}} \forall i, a_i \leq b_i. Each instance of our benchmark problem is then a pair (a,B)\def\LdG{\dot{L}_G} \def\Ld{\dot{L}} \def\bfA{\boldsymbol{A}} \def\bfB{\boldsymbol{B}} \def\bfC{\boldsymbol{C}} \def\bfD{\boldsymbol{D}} \def\bfE{\boldsymbol{E}} \def\bfF{\boldsymbol{F}} \def\bfG{\boldsymbol{G}} \def\bfH{\boldsymbol{H}} \def\bfI{\boldsymbol{I}} \def\bfJ{\boldsymbol{J}} \def\bfK{\boldsymbol{K}} \def\bfL{\boldsymbol{L}} \def\bfM{\boldsymbol{M}} \def\bfN{\boldsymbol{N}} \def\bfO{\boldsymbol{O}} \def\bfP{\boldsymbol{P}} \def\bfQ{\boldsymbol{Q}} \def\bfR{\boldsymbol{R}} \def\bfS{\boldsymbol{S}} \def\bfT{\boldsymbol{T}} \def\bfU{\boldsymbol{U}} \def\bfV{\boldsymbol{V}} \def\bfW{\boldsymbol{W}} \def\bfX{\boldsymbol{X}} \def\bfY{\boldsymbol{Y}} \def\bfZ{\boldsymbol{Z}} \def\bfalpha{\boldsymbol{\alpha}} \def\bfa{\boldsymbol{a}} \def\bfbeta{\boldsymbol{\beta}} \def\bfb{\boldsymbol{b}} \def\bfcd{\dot{\bfc}} \def\bfchi{\boldsymbol{\chi}} \def\bfc{\boldsymbol{c}} \def\bfd{\boldsymbol{d}} \def\bfe{\boldsymbol{e}} \def\bff{\boldsymbol{f}} \def\bfgamma{\boldsymbol{\gamma}} \def\bfg{\boldsymbol{g}} \def\bfh{\boldsymbol{h}} \def\bfi{\boldsymbol{i}} \def\bfj{\boldsymbol{j}} \def\bfk{\boldsymbol{k}} \def\bflambda{\boldsymbol{\lambda}} \def\bfl{\boldsymbol{l}} \def\bfm{\boldsymbol{m}} \def\bfn{\boldsymbol{n}} \def\bfomega{\boldsymbol{\omega}} \def\bfone{\boldsymbol{1}} \def\bfo{\boldsymbol{o}} \def\bfpdd{\ddot{\bfp}} \def\bfpd{\dot{\bfp}} \def\bfphi{\boldsymbol{\phi}} \def\bfp{\boldsymbol{p}} \def\bfq{\boldsymbol{q}} \def\bfr{\boldsymbol{r}} \def\bfsigma{\boldsymbol{\sigma}} \def\bfs{\boldsymbol{s}} \def\bftau{\boldsymbol{\tau}} \def\bft{\boldsymbol{t}} \def\bfu{\boldsymbol{u}} \def\bfv{\boldsymbol{v}} \def\bfw{\boldsymbol{w}} \def\bfxi{\boldsymbol{\xi}} \def\bfx{\boldsymbol{x}} \def\bfy{\boldsymbol{y}} \def\bfzero{\boldsymbol{0}} \def\bfz{\boldsymbol{z}} \def\calA{\mathcal{A}} \def\calB{\mathcal{B}} \def\calC{\mathcal{C}} \def\calD{\mathcal{D}} \def\calE{\mathcal{E}} \def\calF{\mathcal{F}} \def\calG{\mathcal{G}} \def\calH{\mathcal{H}} \def\calI{\mathcal{I}} \def\calJ{\mathcal{J}} \def\calK{\mathcal{K}} \def\calL{\mathcal{L}} \def\calM{\mathcal{M}} \def\calN{\mathcal{N}} \def\calO{\mathcal{O}} \def\calP{\mathcal{P}} \def\calQ{\mathcal{Q}} \def\calR{\mathcal{R}} \def\calS{\mathcal{S}} \def\calT{\mathcal{T}} \def\calU{\mathcal{U}} \def\calV{\mathcal{V}} \def\calW{\mathcal{W}} \def\calX{\mathcal{X}} \def\calY{\mathcal{Y}} \def\calZ{\mathcal{Z}} \def\d#1{{\rm d}{#1}} \def\defeq{\stackrel{\mathrm{def}}{=}} \def\dim{\rm dim} \def\p{\boldsymbol{p}} \def\qdd{\ddot{\bfq}} \def\qd{\dot{\bfq}} \def\q{\boldsymbol{q}} \def\xdd{\ddot{x}} \def\xd{\dot{x}} \def\ydd{\ddot{y}} \def\yd{\dot{y}} \def\zdd{\ddot{z}} \def\zd{\dot{z}} ({\bf a}, {\bf B}) that we will generate by uniform random sampling in [1,1]n×[1,1]n×n\def\LdG{\dot{L}_G} \def\Ld{\dot{L}} \def\bfA{\boldsymbol{A}} \def\bfB{\boldsymbol{B}} \def\bfC{\boldsymbol{C}} \def\bfD{\boldsymbol{D}} \def\bfE{\boldsymbol{E}} \def\bfF{\boldsymbol{F}} \def\bfG{\boldsymbol{G}} \def\bfH{\boldsymbol{H}} \def\bfI{\boldsymbol{I}} \def\bfJ{\boldsymbol{J}} \def\bfK{\boldsymbol{K}} \def\bfL{\boldsymbol{L}} \def\bfM{\boldsymbol{M}} \def\bfN{\boldsymbol{N}} \def\bfO{\boldsymbol{O}} \def\bfP{\boldsymbol{P}} \def\bfQ{\boldsymbol{Q}} \def\bfR{\boldsymbol{R}} \def\bfS{\boldsymbol{S}} \def\bfT{\boldsymbol{T}} \def\bfU{\boldsymbol{U}} \def\bfV{\boldsymbol{V}} \def\bfW{\boldsymbol{W}} \def\bfX{\boldsymbol{X}} \def\bfY{\boldsymbol{Y}} \def\bfZ{\boldsymbol{Z}} \def\bfalpha{\boldsymbol{\alpha}} \def\bfa{\boldsymbol{a}} \def\bfbeta{\boldsymbol{\beta}} \def\bfb{\boldsymbol{b}} \def\bfcd{\dot{\bfc}} \def\bfchi{\boldsymbol{\chi}} \def\bfc{\boldsymbol{c}} \def\bfd{\boldsymbol{d}} \def\bfe{\boldsymbol{e}} \def\bff{\boldsymbol{f}} \def\bfgamma{\boldsymbol{\gamma}} \def\bfg{\boldsymbol{g}} \def\bfh{\boldsymbol{h}} \def\bfi{\boldsymbol{i}} \def\bfj{\boldsymbol{j}} \def\bfk{\boldsymbol{k}} \def\bflambda{\boldsymbol{\lambda}} \def\bfl{\boldsymbol{l}} \def\bfm{\boldsymbol{m}} \def\bfn{\boldsymbol{n}} \def\bfomega{\boldsymbol{\omega}} \def\bfone{\boldsymbol{1}} \def\bfo{\boldsymbol{o}} \def\bfpdd{\ddot{\bfp}} \def\bfpd{\dot{\bfp}} \def\bfphi{\boldsymbol{\phi}} \def\bfp{\boldsymbol{p}} \def\bfq{\boldsymbol{q}} \def\bfr{\boldsymbol{r}} \def\bfsigma{\boldsymbol{\sigma}} \def\bfs{\boldsymbol{s}} \def\bftau{\boldsymbol{\tau}} \def\bft{\boldsymbol{t}} \def\bfu{\boldsymbol{u}} \def\bfv{\boldsymbol{v}} \def\bfw{\boldsymbol{w}} \def\bfxi{\boldsymbol{\xi}} \def\bfx{\boldsymbol{x}} \def\bfy{\boldsymbol{y}} \def\bfzero{\boldsymbol{0}} \def\bfz{\boldsymbol{z}} \def\calA{\mathcal{A}} \def\calB{\mathcal{B}} \def\calC{\mathcal{C}} \def\calD{\mathcal{D}} \def\calE{\mathcal{E}} \def\calF{\mathcal{F}} \def\calG{\mathcal{G}} \def\calH{\mathcal{H}} \def\calI{\mathcal{I}} \def\calJ{\mathcal{J}} \def\calK{\mathcal{K}} \def\calL{\mathcal{L}} \def\calM{\mathcal{M}} \def\calN{\mathcal{N}} \def\calO{\mathcal{O}} \def\calP{\mathcal{P}} \def\calQ{\mathcal{Q}} \def\calR{\mathcal{R}} \def\calS{\mathcal{S}} \def\calT{\mathcal{T}} \def\calU{\mathcal{U}} \def\calV{\mathcal{V}} \def\calW{\mathcal{W}} \def\calX{\mathcal{X}} \def\calY{\mathcal{Y}} \def\calZ{\mathcal{Z}} \def\d#1{{\rm d}{#1}} \def\defeq{\stackrel{\mathrm{def}}{=}} \def\dim{\rm dim} \def\p{\boldsymbol{p}} \def\qdd{\ddot{\bfq}} \def\qd{\dot{\bfq}} \def\q{\boldsymbol{q}} \def\xdd{\ddot{x}} \def\xd{\dot{x}} \def\ydd{\ddot{y}} \def\yd{\dot{y}} \def\zdd{\ddot{z}} \def\zd{\dot{z}} [-1, 1]^n \times [-1, 1]^{n \times n}.

Solving LPs from CVXOPT

Here is the function that solves the LP corresponding to an instance (a,B)\def\LdG{\dot{L}_G} \def\Ld{\dot{L}} \def\bfA{\boldsymbol{A}} \def\bfB{\boldsymbol{B}} \def\bfC{\boldsymbol{C}} \def\bfD{\boldsymbol{D}} \def\bfE{\boldsymbol{E}} \def\bfF{\boldsymbol{F}} \def\bfG{\boldsymbol{G}} \def\bfH{\boldsymbol{H}} \def\bfI{\boldsymbol{I}} \def\bfJ{\boldsymbol{J}} \def\bfK{\boldsymbol{K}} \def\bfL{\boldsymbol{L}} \def\bfM{\boldsymbol{M}} \def\bfN{\boldsymbol{N}} \def\bfO{\boldsymbol{O}} \def\bfP{\boldsymbol{P}} \def\bfQ{\boldsymbol{Q}} \def\bfR{\boldsymbol{R}} \def\bfS{\boldsymbol{S}} \def\bfT{\boldsymbol{T}} \def\bfU{\boldsymbol{U}} \def\bfV{\boldsymbol{V}} \def\bfW{\boldsymbol{W}} \def\bfX{\boldsymbol{X}} \def\bfY{\boldsymbol{Y}} \def\bfZ{\boldsymbol{Z}} \def\bfalpha{\boldsymbol{\alpha}} \def\bfa{\boldsymbol{a}} \def\bfbeta{\boldsymbol{\beta}} \def\bfb{\boldsymbol{b}} \def\bfcd{\dot{\bfc}} \def\bfchi{\boldsymbol{\chi}} \def\bfc{\boldsymbol{c}} \def\bfd{\boldsymbol{d}} \def\bfe{\boldsymbol{e}} \def\bff{\boldsymbol{f}} \def\bfgamma{\boldsymbol{\gamma}} \def\bfg{\boldsymbol{g}} \def\bfh{\boldsymbol{h}} \def\bfi{\boldsymbol{i}} \def\bfj{\boldsymbol{j}} \def\bfk{\boldsymbol{k}} \def\bflambda{\boldsymbol{\lambda}} \def\bfl{\boldsymbol{l}} \def\bfm{\boldsymbol{m}} \def\bfn{\boldsymbol{n}} \def\bfomega{\boldsymbol{\omega}} \def\bfone{\boldsymbol{1}} \def\bfo{\boldsymbol{o}} \def\bfpdd{\ddot{\bfp}} \def\bfpd{\dot{\bfp}} \def\bfphi{\boldsymbol{\phi}} \def\bfp{\boldsymbol{p}} \def\bfq{\boldsymbol{q}} \def\bfr{\boldsymbol{r}} \def\bfsigma{\boldsymbol{\sigma}} \def\bfs{\boldsymbol{s}} \def\bftau{\boldsymbol{\tau}} \def\bft{\boldsymbol{t}} \def\bfu{\boldsymbol{u}} \def\bfv{\boldsymbol{v}} \def\bfw{\boldsymbol{w}} \def\bfxi{\boldsymbol{\xi}} \def\bfx{\boldsymbol{x}} \def\bfy{\boldsymbol{y}} \def\bfzero{\boldsymbol{0}} \def\bfz{\boldsymbol{z}} \def\calA{\mathcal{A}} \def\calB{\mathcal{B}} \def\calC{\mathcal{C}} \def\calD{\mathcal{D}} \def\calE{\mathcal{E}} \def\calF{\mathcal{F}} \def\calG{\mathcal{G}} \def\calH{\mathcal{H}} \def\calI{\mathcal{I}} \def\calJ{\mathcal{J}} \def\calK{\mathcal{K}} \def\calL{\mathcal{L}} \def\calM{\mathcal{M}} \def\calN{\mathcal{N}} \def\calO{\mathcal{O}} \def\calP{\mathcal{P}} \def\calQ{\mathcal{Q}} \def\calR{\mathcal{R}} \def\calS{\mathcal{S}} \def\calT{\mathcal{T}} \def\calU{\mathcal{U}} \def\calV{\mathcal{V}} \def\calW{\mathcal{W}} \def\calX{\mathcal{X}} \def\calY{\mathcal{Y}} \def\calZ{\mathcal{Z}} \def\d#1{{\rm d}{#1}} \def\defeq{\stackrel{\mathrm{def}}{=}} \def\dim{\rm dim} \def\p{\boldsymbol{p}} \def\qdd{\ddot{\bfq}} \def\qd{\dot{\bfq}} \def\q{\boldsymbol{q}} \def\xdd{\ddot{x}} \def\xd{\dot{x}} \def\ydd{\ddot{y}} \def\yd{\dot{y}} \def\zdd{\ddot{z}} \def\zd{\dot{z}} ({\bf a}, {\bf B}):

from numpy import array, eye, hstack, ones, vstack, zeros

def cvxopt_solve_minmax(n, a, B, x_min=-42, x_max=42, solver=None):
    c = hstack([zeros(n), [1]])

    # cvxopt constraint format: G * x <= h
    # first,  a + B * x[0:n] <= x[n]
    G1 = zeros((n, n + 1))
    G1[0:n, 0:n] = B
    G1[:, n] = -ones(n)
    h1 = -a

    # then, x_min <= x <= x_max
    x_min = x_min * ones(n)
    x_max = x_max * ones(n)
    G2 = vstack([
        hstack([+eye(n), zeros((n, 1))]),
        hstack([-eye(n), zeros((n, 1))])])
    h2 = hstack([x_max, -x_min])

    c = cvxopt.matrix(c)
    G = cvxopt.matrix(vstack([G1, G2]))
    h = cvxopt.matrix(hstack([h1, h2]))
    sol = cvxopt.solvers.lp(c, G, h, solver=solver)
    return array(sol['x']).reshape((n + 1,))

You can choose which solver to use via the solver keyword argument, for example solver='glpk' to use GLPK. Leaving it to None will call CVXOPT's default solver for Linear Cone Programs, which should be less efficient than GLPK as it solves a more general class of problems.

Disabling the output from GLPK in CVXOPT

A minor problem I had was to disable solver outputs in CVXOPT. The standard way to do that is via the options dictionary in cvxopt.solvers, which is passed to the selected solver at instantiation time:

cvxopt.solvers.options['show_progress'] = False

It works for the default solver, but not with GLPK. A post on CVXOPT's bulletin board points to the parameter LPX_K_MSGLEV, but it didn't work with my version (1.1.7) of the software either. A docstring in the source code src/C/glpk.c mentions another parameter msg_lev, which works for me:

cvxopt.solvers.options['glpk'] = {'msg_lev': 'GLP_MSG_OFF'}  # cvxopt 1.1.8
cvxopt.solvers.options['msg_lev'] = 'GLP_MSG_OFF'  # cvxopt 1.1.7
cvxopt.solvers.options['LPX_K_MSGLEV'] = 0  # previous versions

Comparing solver performances

In this benchmark, I compared four methods:

  • pulp_coin: COIN called via PuLP
  • pulp_glpk: GLPK called via PuLP
  • cvxopt: CVXOPT's default (general) solver
  • cvxopt_glpk: GLPK called via CVXOPT

Here is a sample of computation times on my machine for problems of size n=10\def\LdG{\dot{L}_G} \def\Ld{\dot{L}} \def\bfA{\boldsymbol{A}} \def\bfB{\boldsymbol{B}} \def\bfC{\boldsymbol{C}} \def\bfD{\boldsymbol{D}} \def\bfE{\boldsymbol{E}} \def\bfF{\boldsymbol{F}} \def\bfG{\boldsymbol{G}} \def\bfH{\boldsymbol{H}} \def\bfI{\boldsymbol{I}} \def\bfJ{\boldsymbol{J}} \def\bfK{\boldsymbol{K}} \def\bfL{\boldsymbol{L}} \def\bfM{\boldsymbol{M}} \def\bfN{\boldsymbol{N}} \def\bfO{\boldsymbol{O}} \def\bfP{\boldsymbol{P}} \def\bfQ{\boldsymbol{Q}} \def\bfR{\boldsymbol{R}} \def\bfS{\boldsymbol{S}} \def\bfT{\boldsymbol{T}} \def\bfU{\boldsymbol{U}} \def\bfV{\boldsymbol{V}} \def\bfW{\boldsymbol{W}} \def\bfX{\boldsymbol{X}} \def\bfY{\boldsymbol{Y}} \def\bfZ{\boldsymbol{Z}} \def\bfalpha{\boldsymbol{\alpha}} \def\bfa{\boldsymbol{a}} \def\bfbeta{\boldsymbol{\beta}} \def\bfb{\boldsymbol{b}} \def\bfcd{\dot{\bfc}} \def\bfchi{\boldsymbol{\chi}} \def\bfc{\boldsymbol{c}} \def\bfd{\boldsymbol{d}} \def\bfe{\boldsymbol{e}} \def\bff{\boldsymbol{f}} \def\bfgamma{\boldsymbol{\gamma}} \def\bfg{\boldsymbol{g}} \def\bfh{\boldsymbol{h}} \def\bfi{\boldsymbol{i}} \def\bfj{\boldsymbol{j}} \def\bfk{\boldsymbol{k}} \def\bflambda{\boldsymbol{\lambda}} \def\bfl{\boldsymbol{l}} \def\bfm{\boldsymbol{m}} \def\bfn{\boldsymbol{n}} \def\bfomega{\boldsymbol{\omega}} \def\bfone{\boldsymbol{1}} \def\bfo{\boldsymbol{o}} \def\bfpdd{\ddot{\bfp}} \def\bfpd{\dot{\bfp}} \def\bfphi{\boldsymbol{\phi}} \def\bfp{\boldsymbol{p}} \def\bfq{\boldsymbol{q}} \def\bfr{\boldsymbol{r}} \def\bfsigma{\boldsymbol{\sigma}} \def\bfs{\boldsymbol{s}} \def\bftau{\boldsymbol{\tau}} \def\bft{\boldsymbol{t}} \def\bfu{\boldsymbol{u}} \def\bfv{\boldsymbol{v}} \def\bfw{\boldsymbol{w}} \def\bfxi{\boldsymbol{\xi}} \def\bfx{\boldsymbol{x}} \def\bfy{\boldsymbol{y}} \def\bfzero{\boldsymbol{0}} \def\bfz{\boldsymbol{z}} \def\calA{\mathcal{A}} \def\calB{\mathcal{B}} \def\calC{\mathcal{C}} \def\calD{\mathcal{D}} \def\calE{\mathcal{E}} \def\calF{\mathcal{F}} \def\calG{\mathcal{G}} \def\calH{\mathcal{H}} \def\calI{\mathcal{I}} \def\calJ{\mathcal{J}} \def\calK{\mathcal{K}} \def\calL{\mathcal{L}} \def\calM{\mathcal{M}} \def\calN{\mathcal{N}} \def\calO{\mathcal{O}} \def\calP{\mathcal{P}} \def\calQ{\mathcal{Q}} \def\calR{\mathcal{R}} \def\calS{\mathcal{S}} \def\calT{\mathcal{T}} \def\calU{\mathcal{U}} \def\calV{\mathcal{V}} \def\calW{\mathcal{W}} \def\calX{\mathcal{X}} \def\calY{\mathcal{Y}} \def\calZ{\mathcal{Z}} \def\d#1{{\rm d}{#1}} \def\defeq{\stackrel{\mathrm{def}}{=}} \def\dim{\rm dim} \def\p{\boldsymbol{p}} \def\qdd{\ddot{\bfq}} \def\qd{\dot{\bfq}} \def\q{\boldsymbol{q}} \def\xdd{\ddot{x}} \def\xd{\dot{x}} \def\ydd{\ddot{y}} \def\yd{\dot{y}} \def\zdd{\ddot{z}} \def\zd{\dot{z}} n=10:

In [1]: %timeit solve_random_minmax(10, 'pulp_coin')
10 loops, best of 3: 30.4 ms per loop

In [2]: %timeit solve_random_minmax(10, 'pulp_glpk')
10 loops, best of 3: 23.3 ms per loop

In [3]: %timeit solve_random_minmax(10, 'cvxopt')
100 loops, best of 3: 2.22 ms per loop

In [4]: %timeit solve_random_minmax(10, 'cvxopt_glpk')
1000 loops, best of 3: 330 µs per loop

In this case, calling GLPK from CVXOPT rather than PuLP is 70 times faster! The reason is most likely that PuLP writes files and call the command line, while CVXOPT uses its own internal modules. Meanwhile, CVXOPT-GLPK is faster than CVXOPT, which is also expected because the default solver in CVXOPT handles a larger class of problems called Cone Programs.

Here is more benchmarking data:

Results of the benchmark of LP solvers in Python

The bottom line is:

  • cvxopt_glpk is 2 to 10 times faster than cvxopt,
  • cvxopt_glpk and cvxopt are 10 to 70 times faster than PuLP.

This difference is especially significant on small problems. You can try for yourself on your own machine, the full benchmark script is available here: lp-benchmark.py.

To go further

You can try out the lpsolvers module to solve linear programs with CVXOPT or other solvers available in Python.

Discussion

There are no comments yet. Feel free to leave a reply using the form below.

Post a comment

You can use Markdown with $\LaTeX$ formulas in your comment.

You agree to the publication of your comment on this page under the CC BY 4.0 license.

Your email address will not be published.