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MaxEnt

Paper

Maximum Entropy Inverse Reinforcement Learning

Brian D. Ziebart, Andrew Maas, J. Andrew Bagnell, and Anind K. Dey.
AAAI Conference on Artificial Intelligence (AAAI 2008).
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MaxEnt Framework

@ States s

@ Actions a

@ Transition distribution T : {Pr(s|s,a)}
@ Feature vector for state s: f;

e Path ¢ = ((s0, a0),---,(s7,aT))

°

f

se( s

Feature counts f; =
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MaxEnt Framework

@ States s

@ Actions a

@ Transition distribution T : {Pr(s|s,a)}
@ Feature vector for state s: f;
°
°

Path ¢ = ((s0, 20), - - -, (57, a7))
f

Feature counts fo = > _ . f;

Rewards
Linear model: r(f;) := 0'f;. J
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Goal: learn a pdf P over trajectories {(}.
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Demonstrations

@ Trajectories {f,-, 1<i < m}

o Empirical feature count: f := %Z,f@
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Demonstrations

@ Trajectories {f,-, 1<i < m}

o Empirical feature count: f := %Z,f&

Matching on feature expectations
Choose P s.t., for ( ~ P,

E(f) =) PFf =T
¢
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Observation: infinitely many solutions.
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Enters Entropy

P(Cl0) = Z(@) e’




Enters Entropy

P(Cl0) = Z(@) e’

Nice:
@ Same reward = same probability
@ Higher reward = exponentially preferred
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Enters Entropy

P(Cl0) = Z(@) e’

Nice:
@ Same reward = same probability
@ Higher reward = exponentially preferred

Not nice:
° Z(0) =) e?'fc heavy to compute
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Learning

Maximum likelihood over example trajectories:

6" = argmax L(0) = arg maxz log P((]6).
0 o7
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Learning

Maximum likelihood over example trajectories:

6" = argmax L(0) = arg maxz log P((]6).
0 o7

Compute # through gradient descent:

VL(O) =F ) P(CIOF.
¢
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Pipeline Summary
Reward model: r(f;) =0Tf,

@ Demonstrations (;
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Pipeline Summary
Reward model: r(f;) =0"f,

@ Demonstrations QN",-
o Feature count vector f
@ From a given 0: V(, P((|0) given by MaxEnt
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Pipeline Summary
Reward model: r(f;) =0"f,

@ Demonstrations QN",-

o Feature count vector f
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Pipeline Summary
Reward model: r(f;) =0"f,

@ Demonstrations QN",-

o Feature count vector f

@ From a given 0: V(, P((|0) given by MaxEnt
o Gradient descent: VL(0) =f — > P(¢|0)F
e “Optimal” #*
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Today's Paper

Paper

Sergey Levine and Vladlen Koltun
Continuous Inverse Optimal Control with Locally Optimal Examples
Proceedings of the 29th International Conference on Machine Learning (2012)
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Differences

@ Dynamics function (known to the learner):
Xt = f(xt_17 Ut)

@ More general reward functions:

r(u) = Z r(xe, uy)

t
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Contribution

Same model:

P(ulxq) = Z(lu) exp <Z r(xe, ut)>

t
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Contribution

Same model:

P(ulxq) = Z(lu) exp (Z r(xe, ut)>

t

Algorithm
Faster computation of Z(u): O(T) instead of O(T?3). }
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MaxEnt model:

-1
P(u|xy) = "™ [/ e’(ﬁ)dﬁ]

First-order approximation of r(i1):

- . 1. -
r(1) ~ r(u) + (i —u) 'g + E(u —u) 'H(ii — u)
@ inject into integral
@ neglect (some) second-order variations: %
@ do the math...
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Approximate log-likelihood:

2L = g'H g + log det(—H) — dim(u) log(27)

Convenient expression when r parametrized by 6:

oL . (8g 8H)

20— 7\ a0 a0

October 31, 2012 15 / 18



Pros and cons

Nice:
e Fast approximation of P(u|xq) = bigger domains
@ Only needs locally optimal examples
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Pros and cons

Nice:
e Fast approximation of P(u|xq) = bigger domains
@ Only needs locally optimal examples

Not nice:
@ Learner needs to know/model environment dynamics
@ No measure of approximation errors
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Other remarks

e Computation time cubic in dim(x), dim(u)
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Other remarks

e Computation time cubic in dim(x), dim(u)
@ High dimensional domains: what about exploration?
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Thanks for your attention!
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