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RL in robotics



2020: Quadrupedal locomotion

Teacher-student residual reinforcement learning [Lee+20]

Video: https://youtu.be/oPNkeoGMvAE
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2018: In-hand reorientation

LSTM policy with domain randomization [And+20]

Video: https://youtu.be/jwSbzNHGflM
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https://youtu.be/jwSbzNHGflM


2010: Helicopter stunts

Helicopter aerobatics through apprenticeship learning [ACN10]

Video: https://youtu.be/M-QUkgk3HyE
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1997: Pendulum swing up

Swinging up an inverted pendulum from human demonstrations [AS97]

Video: https://youtu.be/g3I2VjeSQUM?t=294
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Basics of reinforcement learning



Scope

EnvironmentAgent
action

observation

reward
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Rewards

Image credit: L. M. Tenkes, source: https://araffin.github.io/post/sb3/
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Partially observable Markov decision process (1/2)

• State: st, ground truth of the environment
• Action: at, decision of the agent (discrete or continuous)
• Observation: ot, partial estimation of the state from sensors
• Reward: rt ∈ R, scalar feedback, often rt = r(st, at) or r(st, at, st+1)
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Partially observable Markov decision process (2/2)

Deterministic Stochastic
Model: st+1 = f(st, at) st+1 ∼ p(·|st, at) how the environment evolves

Initial state: s0 s0 ∼ ρ0(·) where we start from
Observation: ot = h(st) ot ∼ z(·|st) how sensors measure the world

Policy: at = g(st) at ∼ π(·|ot) what the agent decides

Robotics MVA 2024 Lecture 7: Reinforcement learning for locomotion 8



Example: The Gymnasium API

import gymnasium as gym

with gym.make("CartPole-v1", render_mode="human") as env:
env.reset()
action = env.action_space.sample()
for step in range(1_000_000):

observation, reward, terminated, truncated, _ = env.step(action)
if terminated or truncated:

observation, _ = env.reset()
cart_position = observation[0]
action = 0 if cart_position > 0.0 else 1
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Same API for simulation and real robots

import gymnasium as gym

with gym.make("UpkieGroundVelocity-v1", frequency=200.0) as env:
env.reset()
action = env.action_space.sample()
for step in range(1_000_000):

observation, reward, terminated, truncated, _ = env.step(action)
if terminated or truncated:

observation, _ = env.reset()
pitch = observation[0]
action[0] = 10.0 * pitch # action is [ground_velocity]
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Goal of reinforcement learning

Two last missing pieces:

• Episode: τ = (s0, a0, r0, s1, a1, r1, . . .) truncated or infinite1

• Return: R(τ) =
∑

t∈τ rt or with discount γ ∈]0, 1[: R(τ) =
∑

t∈τ γ
trt

We can now state what reinforcement learning is about:

Goal of reinforcement learning
The goal of reinforcement learning is to find a policy that maximizes returns.

1In practice episodes contain ot rather than st . In RL, we implicitly assume that observations contain enough
information to be in bijection with their corresponding states. See also Augmenting observations thereafter.
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Stochastic reinforcement learning

In the stochastic setting, the goal of reinforcement learning is:

max
π

Eτ [R(τ)]

s.t. τ = (s0, a0, s1, a1, . . .)

s0 ∼ ρ0(·)
o0 ∼ z(·|s0)
a0 ∼ π(·|o0)
s1 ∼ p(·|s0, a0)
...
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Value functions

State value functions V :

• On-policy: expected return from a given policy: V π(s) = Eτ∼π(R(τ)|s0 = s)

• Optimal: best return we can expect from a state: V ∗(s) = maxπ Eτ∼π(R(τ)|s0 = s)

State-action value functions Q:

• On-policy: expected return from following policy:
Qπ(s, a) = Eτ∼π(R(τ)|s0 = s, a0 = a)

• Optimal: best return we can expect: Q∗(s, a) = maxπ Eτ∼π(R(τ)|s0 = s, a0 = a)
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Components of an RL algorithm

A reinforcement-learning algorithm may include any of the following:

• Policy: function approximator for the agent’s behavior
• Value function: function approximator for the value of states
• Model: representation of the environment

An algorithm with a policy (actor) and a value function (critic) is called actor-critic.

An algorithm with an explicit model is called model-based (without: model-free).
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A taxonomy of RL algorithms

There are several taxonomies, none of them fully works. This one is from [Ach18].
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A taxonomy of RL algorithms

Our focus in what follows.
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Policy optimization



Parameterized policy

We parameterize our policy πθ by a vector θ ∈ Rn.

For continuous actions, it is common to use a diagonal Gaussian policy:

a ∼ πθ(·|s) ⇐⇒ a = µθ(s) + diag(σθ(s))z, z ∼ N (0, Im)

where µθ and σθ are neural networks mapping states to means and standard deviations.2

2In practice, σ often does not depend on s, and we store logσ ∈ Rm rather than σ ∈ Rm
+ in θ.
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Policy-based algorithms

A policy-based algorithm updates policy parameters θ iteratively.

At each iteration k:

• Collect a batch of episodes Dk = {τ}
• Apply some update θk+1 = update(θk,Dk) to get a new policy πθk+1
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Policy optimization

The goal of RL is to find a policy that maximizes the expected return. In terms of θ:

J(θ) = Eτ∼πθ
[R(τ)]

In policy optimization, we seek an optimum by gradient ascent:

θk+1 = θk + α∇θJ(θk)

The gradient ∇θJ with respect to policy parameters θ is called the policy gradient.
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Policy gradient theorem

Policy gradient theorem
The policy gradient can be computed from returns and the log-policy gradient ∇θ logπθ

as:

∇θJ(θ) = Eτ∼πθ

(
R(τ)

∑
st,at∈τ

∇θ logπθ(at|st)

)

LHS: the graal. RHS: things we observe (R(τ)) or know by design (∇θ logπθ).
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Log-policy gradient example

With a diagonal Gaussian policy µθ(s), σθ :

logπθ(a|s) = −
1

2

k∑
i=1

(
(ai − µθ,i(s))

2

σ2
θ,i

+ 2 logσθ,i

)
− k

2
log 2π

∇θ logπθ(a|s) =
k∑

i=1

ai − µθ,i(s)

σ2
θ,i

∇θµθ,i(s) +
(ai − µθ,i(s))

2 − σ2

σ3
θ,i

∇θσθ,i

where s 7→ µθ(s) is typically a neural network from which we can get ∇θµθ(s).
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Policy gradient theorem: proof sketch

∇θJ(θ) = ∇θEτ∼πθ
(R(τ)) definition

= ∇θ

∫
τ

R(τ)P(τ |θ)dτ expectation as integral

=

∫
τ

R(τ)∇θP(τ |θ)dτ Leibniz integral rule

=

∫
τ

R(τ)P(τ |θ)∇θ logP(τ |θ)dτ log-derivative trick

=

∫
τ

R(τ)
∑

st,at∈τ

∇θ logπθ(at|st)P(τ |θ)dτ expand P(τ |θ) as product

= Eτ∼πθ

(
R(τ)

∑
st,at∈τ

∇θ logπθ(at|st)

)
integral as expectation
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REINFORCE (1/2)

REINFORCE algorithm [SB18]
Data: initial policy parameters θ0, learning rate α

Initialize policy parameters θ (e.g. to 0);
for k = 0, 1, 2, . . . do

Roll out an episode τ = (o0, a0, . . . , oN , aN ) following πθk ;
for each step t ∈ τ do

R←
∑N

t′=t+1 γ
t′−t−1rt′ ;

θ ← θ + αγtR∇θ logπθ(at|st)
end

end
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REINFORCE (2/2)

Gradient ascent:
θk+1 = θk + α∇θJ(θk)

From the policy gradient theorem, this is equivalent to:

θk+1 = θk + αEτ∼πθ

(
R(τ)

∑
st,at∈τ

∇θ logπθ(at|st)

)

REINFORCE drops the expectation:

θk+1 = θk + αR(τk)
∑

st,at∈τk

∇θ logπθ(at|st)
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Vanilla policy gradient [Ach18]
Data: initial policy parameters θ0, initial value function parameters ϕ0, learning rate α

for k = 0, 1, 2, . . . do
Collect episodes Dk = {τi} by running πθ = π(θk);
Compute returns R̂t and advantage estimates Ât based on Vϕk

;
Estimate the policy gradient as

ĝk =
1

|Dk|
∑
τ∈Dk

T∑
t=0

∇θ log πθ(at|st)|θk Ât

Update policy parameters by e.g. gradient ascent, θk+1 = θk + αĝk ;
Fit value function by regression on mean-square error:

ϕk+1 = arg min
ϕ

1

T |Dk|
∑
τ∈Dk

T∑
t=0

(
R̂t − Vϕ(st)

)2
end
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Proximal policy optimization [Sch+17]
Data: initial policy parameters θ0, initial value function parameters ϕ0

for k = 0, 1, 2, . . . do
Collect episodes Dk = {τi} by running πθ = π(θk);
Compute returns R̂t and advantage estimates Ât based on Vϕk

;
Clipping: Update policy parameters by maximizing the clipping objective:

θk+1 = arg max
θ

1

|Dk|T
∑
τ∈Dk

T∑
t=0

min
(

πθ(at|st)
πθk(at|st)

Aπθk (st, at), clip(ϵ, Aπθk (st, at))

)
where clip(ϵ, A) = (1 + ϵ)A if A ≥ 0 else (1− ϵ)A

Fit value function by regression on mean-square error:

ϕk+1 = arg min
ϕ

1

T |Dk|
∑
τ∈Dk

T∑
t=0

(
R̂t − Vϕ(st)

)2
end
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Training with PPO



Training

PPO
Curri-
culum

Policy

Env.

– Learning rate
– Clip fraction
– ...

– DR bounds
– Terrain difficulty
– ...

Episodes

Parameters
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Environment

PPO
Curri-
culum

Policy

Env.

– Learning rate
– Clip fraction
– ...

– DR bounds
– Terrain difficulty
– ...

Episodes

Parameters
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Rolling out episodes with a simulator

Robotics MVA 2024 Lecture 7: Reinforcement learning for locomotion 29



Curriculum

PPO
Curri-
culum

Policy

Env.

– Learning rate
– Clip fraction
– ...

– DR bounds
– Terrain difficulty
– ...

Episodes

Parameters
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Monitoring training

Monitor the average return ep_rew_mean and length ep_rew_len of episodes.

If training goes well, both eventually plateau at their maximum values.
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Training with PPO

PPO
Curri-
culum

Policy

Env.

– Learning rate
– Clip fraction
– ...

– DR bounds
– Terrain difficulty
– ...

Episodes

Parameters
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Optimizer parameters: steps, epochs, mini-batching

The optimizer behind PPO, usually Adam [KB14], comes with parameters:

• learning_rate : step size parameter, typically decreasing with a linear schedule.
• n_epochs : number of uses of the rollout buffer while optimizing the surrogate loss.

• batch_size : mini-batch size, same as in stochastic gradient descent.

low learning rate
ep

_
re

w
_

m
ea

n

ludicrous learning rate

high learning rate

ideal learning rate

epochs
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Application to robotics



Sim-to-real gap

Train Run

Sim Real

sim2real gap

Figure 1: The “sim-to-real gap” is a metaphor for model mismatch.
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Crossing the gap

To help generalize across the sim-to-real gap:

• Domain randomization
• Data-based simulation
• Teacher-student distillation
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Domain randomization

Randomize selected environment parameters:

• Robot geometry: limb lengths, wheel diameters, …
• Inertias: masses, mass distributions
• Initial state: s0 ∼ ρ0(·)
• Actuation models: delays, bandwidth, …
• Perturbations: send (1± ϵ)τ torques…

Domain randomization makes policies more conservative.

Robotics MVA 2024 Lecture 7: Reinforcement learning for locomotion 36



Data-based actuation models

3

3Jemin Hwangbo, Joonho Lee, Alexey Dosovitskiy, Dario Bellicoso, Vassilios Tsounis, Vladlen Koltun, and
Marco Hutter. “Learning agile and dynamic motor skills for legged robots”. In: Science Robotics 4.26 (2019).
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Teacher-student distillation

• Train a teacher policy in simulation with privileged information
• Train a student policy in simulation with observations and teacher action

4

4Xuxin Cheng, Kexin Shi, Ananye Agarwal, and Deepak Pathak. “Extreme parkour with legged robots”. In: 2024
IEEE International Conference on Robotics and Automation (ICRA). IEEE. 2024, pp. 11443–11450.
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Training a policy

General things to do when training a policy:

• Augment observations with history
• Curriculum learning
• Normalize observations and actions
• Reward shaping
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Augmenting observations with history

We assumed a Markovian system, but real systems have lag:

Definition
The lag of a system is the number of observations required to estimate its state.

Counter-measure: augment observations with history to restore the Markov property.
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Observation-action normalization

Unnormalized actions don’t work well on actors with Gaussian policies:

• Bounds too large⇒ sampled actions cluster around zero.
• Bounds too small⇒ sampled actions saturate all the time, bang-bang behavior.

Good practice: bound observations/states, rescale actions to [−1, 1].
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Curriculum learning

Randomization and task difficulty vary based on policy performance.

Example: terrain curriculum for quadrupedal locomotion [Lee+20]:

easier                                 harder
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Reward shaping

Let re denote the reward associated with an error function e:

Motivation:

• Exponential: re = exp(−e2)

Penalization:

• Absolute value re = −|e|
• Squared value: re = −e2
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RewArt

Making an RL pipeline work can lead to complex rewards, e.g. in [Lee+20]:

• Linear velocity tracking: rlv = exp(−2.0(vpr − 0.6)2), or 1, or 0
• Angular velocity tracking: rav = exp(−1.5(ωpr − 0.6)2), or 1
• Base motion tracking: rb = exp(−1.5v2o) + exp(−1.5‖(BIBω)xy‖2)
• Foot clearance: rfc =

∑
i∈Iswing

1fclear(i)/|Iswing|
• Body-terrain collisions: rbc = −|Ic,body\Ic,foot|
• Foot acceleration smoothness: rs = −‖(rf,d)t − 2(rf,d)t−1 + (rf,d)t−2‖
• Torque penalty: rτ = −

∑
i |τi|

Final reward: r = 0.05rlv + 0.05rav + 0.04rb + 0.01rfc + 0.02rbc + 0.025rs + 2 · 10−5rτ
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Keep in mind that we are in a stochastic world
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Figure 2: We may be observing the effect of our parameter.
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Keep in mind that we are in a stochastic world
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Figure 2: Or we may be observing the variance of the training process.
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What did we see?



What we saw

Introduction to policy optimization:

• Partially-observable Markov decision process (POMDP)
• The goal of reinforcement learning
• Model, policy and value function
• Policy optimization: REINFORCE, policy gradient, PPO

Application to robotics:

• Sim-to-real gap: domain randomization, hybrid simulation
• Techniques: curriculum, distillation, history, “RewArt”

RL is not magic: great results, possibly going to great lengths!
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Thank you for your attention!5

5Thanks to Elliot Chane-Sane, Thomas Flayols, Nicolas Perrin-Gilbert, Philippe Souères and the 2023 class at
MVA for feedback on previous versions of these slides.
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Bonus slides



Bellman equation

Value functions satisfy the Bellman equation:

Bellman equation

V ∗(s) = max
π

Ea∼π(·|s),(r,s′)∼p(s′|s,a)[r + γV ∗(s′)]

This is a connection to optimal control (e.g. differential dynamic programming) and
Q-learning, but not our topic today.
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Intuition behind clipping in PPO

When the advantage is positive:

L(s, a, θk, θ) = min
(

πθ(a|s)
πθk(a|s)

, (1 + ϵ)

)
Aπθk (s, a)

The objective increases if the action becomes more likely πθ(a|s) > πθk(a|s), but no extra
benefit as soon as πθ(a|s) > (1 + ϵ)πθk(a|s).

When the advantage is negative: idem mutatis mutandis.
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PPO loss function

Surrogate loss of PPO
loss = policy_gradient_loss + ent_coef * entropy_loss + vf_coef * value_loss

• policy_gradient_loss : regular loss resulting from episode returns.
• entropy_loss : negative of the average policy entropy. It should increase to zero over
training as the policy becomes more deterministic.

• value_loss : value function estimation loss, i.e. error between the output of the
function estimator and Monte-Carlo or TD(GAE lambda) estimates.
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PPO hyperparameters

The PPO implementation in Stable Baselines3 has > 25 parameters, including:

• clip_range : clipping factor in policy loss.
• ent_coef : weight of entropy term in the surrogate loss.
• gae_lambda : parameter of Generalized Advantage Estimation.

• net_arch_pi : policy network architecture.
• net_arch_vf : value network architecture.
• normalize_advantage : use advantage normalization?
• vf_coef : weight of value-function term in the surrogate loss.

Robotics MVA 2024 Lecture 7: Reinforcement learning for locomotion 52



PPO health metrics

Some metrics indicate whether training is going well:

• approx_kl : approximate KL divergence between the old policy and the new one.

• clip_fraction : mean fraction of policy ratios that were clipped.

• clip_range : value of the clipping factor for policy ratios.

• explained_variance : ≈ 1 when the value function is a good predictor for returns.
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Policy with history and hybrid simulation

6

6Jemin Hwangbo, Joonho Lee, Alexey Dosovitskiy, Dario Bellicoso, Vassilios Tsounis, Vladlen Koltun, and
Marco Hutter. “Learning agile and dynamic motor skills for legged robots”. In: Science Robotics 4.26 (2019).
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