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What do we want?

COMANOID project – https://comanoid.cnrs.fr

https://comanoid.cnrs.fr
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What do we want?

COMANOID project – Aircraft entry plan (2017)
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What do we want?

Hard part: dynamic stair climbing
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Interest reaches farther than humanoids

Duality between manipulation and walking

Figures adapted from [Eng+11] (left) and [HRO16] (right)
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How to walk a humanoid robot?

Walking pattern generation (= planning)

Walking stabilization (= tracking)
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Walking on a plane

Newton equation:

mc̈ = f + m~g

Force is grounded at CoP:

f = ω2(c − r)

Holonomic constraint:

c̈z = 0 ⇒ ω2 = g/h

Newton equ. simplifies to:

c̈xy = ω2(cxy − r xy )
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Walking on a plane

Linear time-invariant system:

c̈ = ω2(c − r)

Plus, feasibility constraint:

r ∈ S

Question: how to stop?
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Walking on a plane

System: x =
[
c ċ

]
where

c̈ = ω2(c − r)

Input: center of pressure r

Balance: starting from

x0 =

[
c0

ċ0

]
How to bring the sys. to a stop?

With a stationary solution?
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Instantaneous Capture Point

Recall that c̈ = ω2(c − r)

Define the capture point:

ξ = c +
ċ

ω

First-order dynamics:

ξ̇ = ω(ξ − r)

ċ = ω(ξ − c)

Stopped by r = ξ (stationary)

On this topic, go and read [Eng+11]
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Towards 3D, take one

Apply same equation but in 3D:

c̈ = ω2(c − ν)

ν: Virtual Repellent Point

Feasibility constraint becomes:

r = ν +
g

ω2
∈ S

Equation of motion is LTI but system
nonlinear from feasibility constraint

Related references: [EOA15; CK17]
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Time-varying DCM

Newton equation:
c̈ = λ(c − r) + g

Divergent component of motion:

ξ = ċ + ωc

First-order dynamics:

ξ̇ = ωξ + g − λr

... under the Riccati equation: ω̇ = ω2 − λ

Discussed in [CM18; Car+18]
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Boundedness condition

Differential equation: ξ̇ = ωξ + g − λr

Solution is:

ξ(t) = eΩ(t)

(
ξ(0) +

∫ t

0
e−Ω(τ)(λ(τ)r(τ)− g)dτ

)
As t →∞, the DCM ξ should stay bounded

Therefore,

ξ(0) =

∫ ∞
0

(λ(t)r(t)− g)e−Ω(t)dt

Constraint between current state (LHS) and all future inputs
λ(t), r(t) of the inverted pendulum (RHS)
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Problem formulation

Change of variable: s(t) = e−Ω(t)

Boundedness condition becomes:∫ 1

0
r xy (s)(sω(s))′ds = ċxyi + ωic

xy
i

g

∫ 1

0

1

ω(s)
ds = ċzi + ωic

z
i

Optimize over ϕi = s2
i ω(si )

2

From ϕ∗, derive
λ(s), ω(s), λ(t), ω(t), r(t), c(t), . . .
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Optimization problem

minimize
ϕ1,...,ϕN

N−1∑
j=1

[
ϕj+1 − ϕj

∆j
−
ϕj − ϕj−1

∆j−1

]2

(1)

subject to

N−1∑
j=0

∆j√
ϕj+1 +

√
ϕj
−

czi
g

√
ϕN =

ċzi
g (2)

ω2
i ,min ≤ ϕN ≤ ω2

i ,max (3)

∀j , λmin∆j ≤ ϕj+1 − ϕj ≤ λmax∆j (4)

ϕ1 = ∆0g/zf (5)

(1): min. height variations (2): boundedness (3): CoP polygon
(4): pressure constraints (5): stationary height zf



20

Behavior of solutions

Figure : CoM trajectories obtained by solving the resultant nonlinear
optimization for different initial velocities.
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Resulting walking patterns

Code: https://github.com/stephane-caron/capture-walking

https://github.com/stephane-caron/capture-walking
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What did we see?

Horizontal walking → LTI system

With CoM height variations → nonlinear system

Solve first the boundedness condition → LTV system

Link with TOPP, nonlinear optimization...

Outcome: dynamic stair-climbing walking patterns

For details, see [CM18; Car+18]



23

Thanks!

Thank you for your attention!
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