DIVERGENT COMPONENTS OF MOTION

Stéphane Caron

October 29, 2019

JRL Seminar, CNRS-AIST Joint Robotics Laboratory, Tsukuba

WARMUP : SOME CONTROL THEORY

$\dot{X} = \lambda X$

To control x toward a time-varying reference $x^{d}(t)$, apply the same to the error $e = x - x^{d}$

$\dot{x} = Ax$

• Stability : all poles $\lambda_i < 0$

$\dot{x} = Ax + Bu$

- Closed loop : $\dot{x} = (A BK)x$
- Poles : eig(A BK)
- Pole placement

APPLICATION TO LEGGED ROBOTS

 $\ddot{c} = \omega^2 (c - z)$

Real robot and reference trajectories :

$$\ddot{c} = \omega^2 (c - z)$$
$$\ddot{c}^d = \omega^2 (c^d - z^d)$$

Tracking error $\Delta y = y - y^d$:

$$\Delta \ddot{c} = \omega^2 (\Delta c - \Delta z)$$

Linear system : error dynamics is the same as system dynamics.

^{1.} Shuuji КАЈІТА, Fumio КАNEHIRO, Kenji КАNEKO, Kazuhito YOKOI et Hirohisa HIRUKAWA. « The 3D Linear Inverted Pendulum Mode : A simple modeling for a biped walking pattern generation ». In : IEEE/RSJ International Conference on Intelligent Robots and Systems. 2001.

$$\ddot{c} = \omega^2 (c - z)$$

With $x = [c \dot{c}]$ and u = z:

$$\dot{\mathbf{x}} = \begin{bmatrix} \dot{\mathbf{c}} \\ \ddot{\mathbf{c}} \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ \omega^2 & 0 \end{bmatrix} \mathbf{x} + \begin{bmatrix} 0 \\ -\omega^2 \end{bmatrix} \mathbf{u}$$

Linear feedback :

 $\Delta u = k_p \Delta c + k_v \Delta \dot{c}$

How to choose the gains k_p and k_v ?

^{2.} Shuuji KAJITA, Mitsuharu MORISAWA, Kanako MIURA, Shin'ichiro NAKAOKA, Kensuke HARADA, Kenji KANEKO, Fumio KANEHIRO et Kazuhito YOKOI. « Biped walking stabilization based on linear inverted pendulum tracking ». In : IEEE/RSJ International Conference on Intelligent Robots and Systems. 2010.

What if we can diagonalize A?

Linear system

$$\dot{x} = Ax + Bu$$
 $u = -Kx$

The diagonalization of A would give :

$$A = \begin{bmatrix} 0 & 1 \\ \omega^2 & 0 \end{bmatrix} = P \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix} P^{-1}$$

We could then change variable $\tilde{x} = P^{-1}x$ so that :

$$\dot{\tilde{x}} = P^{-1}\dot{x} = P^{-1}AP\tilde{x} + P^{-1}Bu = \begin{bmatrix} \lambda_1 & 0\\ 0 & \lambda_2 \end{bmatrix} \tilde{x} + \tilde{B}\tilde{u}$$

The coordinates of \tilde{x} are *decoupled*.

diagonalization (2/2)

Linear system

$$\dot{x} = Ax + Bu$$
 $u = -Kx$

Good news! We can diagonalize A :

$$\mathsf{A} = \frac{1}{2} \begin{bmatrix} 1 & 1\\ -\omega & \omega \end{bmatrix} \begin{bmatrix} -\omega & 0\\ 0 & +\omega \end{bmatrix} \begin{bmatrix} 1 & -\frac{1}{\omega}\\ 1 & +\frac{1}{\omega} \end{bmatrix}$$

We then change variable :

$$\widetilde{X} = \begin{bmatrix} \zeta \\ \xi \end{bmatrix} = P^{-1}X = \begin{bmatrix} C - \frac{\dot{c}}{\omega} \\ C + \frac{\dot{c}}{\omega} \end{bmatrix}$$

So that our system becomes :

$$\dot{\tilde{X}} = \begin{bmatrix} \dot{\zeta} \\ \dot{\xi} \end{bmatrix} = \begin{bmatrix} -\omega & 0 \\ 0 & +\omega \end{bmatrix} \begin{bmatrix} \zeta \\ \xi \end{bmatrix} + \begin{bmatrix} +\omega \\ -\omega \end{bmatrix} u \iff \begin{cases} \dot{\zeta} = \omega(u-\zeta) \\ \dot{\xi} = \omega(\xi-u) \end{cases}$$

Convergent component of motion

 $\dot{\zeta} = \omega(u - \zeta)$

- No feedback required
- Stable : $\zeta \to 0$ as long as $u \to 0$

Divergent component of motion

$$\dot{\xi} = \omega(\xi - u)$$

- Feedback $u = k_{\xi}\xi$ required!
- Stable as long as $k_{\xi} > 1$

We only apply $u = k_{\xi}\xi$ since $\xi \to 0 \Rightarrow u \to 0 \Rightarrow \zeta \to 0$.

BACK TO OUR INITIAL QUESTION

Equation of motion

 $\ddot{c} = \omega^2 (c - z)$

With $x = [c \dot{c}]$ and u = z:

$$\dot{X} = \begin{bmatrix} \dot{c} \\ \ddot{c} \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ \omega^2 & 0 \end{bmatrix} X + \begin{bmatrix} 0 \\ -\omega^2 \end{bmatrix} U$$

We now know how to select our gains :

$$u = k_p c + k_v \dot{c} = k_\xi \xi$$
$$k_v = k_p / \omega$$
$$k_p > 1$$

Best possible linear feedback [Sug09].

^{3.} Tomomichi SUGIHARA. « Standing stabilizability and stepping maneuver in planar bipedalism based on the best COM-ZMP regulator ». In : *IEEE International Conference on Robotics and Automation*. 2009.

The idea behind this approach has been explored in control theory.

Exponential dichotomy (Coppel, 1967) The system $\dot{x} = A(t)x$ has an *exponential dichotomy* iff there exists a projection II and constants $K, L, \alpha, \beta > 0$ such that its solutions satisfy : $|\Pi x(t)| \le Ke^{-\alpha(t-t_0)}|\Pi x(t_0)|$ $t_0 \le t$ $|(I - \Pi)x(t)| \ge Le^{+\beta(t-t_0)}|(I - \Pi)x(t_0)|$ $t_0 \le t$

- $\cdot \, \, \Pi$ projects on CCMs that converge in forward time
- + $(I \Pi)$ projects on DCMs that diverge in forward time

Pendular models for locomotion fall into this category of systems.

^{4.} William A. COPPEL. Dichotomies in stability theory. Lecture notes in mathematics 629. OCLC : 3609707. Berlin : Springer, 1978. 97 p.

HEIGHT VARIATION STRATEGY

^{5.} Twan KOOLEN, Michael POSA et Russ TEDRAKE. « Balance control using center of mass height variation : Limitations imposed by unilateral contact ». In : *IEEE-RAS International Conference on Humanoid Robots*. 2016.

 $\ddot{c} = \lambda(c - z) + g$

Nonlinear : both z and λ are inputs

$$\dot{x} = \begin{bmatrix} \dot{c} \\ \ddot{c} \end{bmatrix} = \begin{bmatrix} 0 & l_3 \\ \lambda l_3 & 0 \end{bmatrix} x + \begin{bmatrix} 0 \\ -l_3 \end{bmatrix} (\lambda z - g)$$
$$= A(\lambda)x + B(\lambda z - g)$$

Planning : fix $\lambda(t)$ to make system linear time-variant :

 $\dot{x} = A(t)x + B\lambda(t)z - Bg$

What about feedback on λ ?

^{6.} Michael A. HOPKINS, Dennis W. HONG et Alexander LEONESSA. « Humanoid locomotion on uneven terrain using the time-varying Divergent Component of Motion ». In : *IEEE-RAS International Conference on Humanoid Robots*. IEEE, 2014, p. 266–272.

$$\dot{x} = \begin{bmatrix} \dot{c} \\ \ddot{c} \end{bmatrix} = \begin{bmatrix} 0 & l_3 \\ \lambda l_3 & 0 \end{bmatrix} x + \begin{bmatrix} 0 \\ -l_3 \end{bmatrix} (\lambda z - g)$$

Let $\widetilde{x} = P^{-1}x$ with :

$$P = \frac{1}{\gamma + \omega} \begin{bmatrix} l_3 & l_3 \\ -\omega l_3 & +\gamma l_3 \end{bmatrix} \iff P^{-1} = \begin{bmatrix} \gamma l_3 & -l_3 \\ \omega l_3 & +l_3 \end{bmatrix}$$

Changing variable yields $\dot{\tilde{x}} = \tilde{A}x + \tilde{b}$ with :

$$\widetilde{\mathsf{A}} = \frac{1}{\gamma + \omega} \begin{bmatrix} (\dot{\gamma} - \gamma \omega - \lambda)I_3 & (\dot{\gamma} + \gamma^2 - \lambda)I_3 \\ (\dot{\omega} - \omega^2 + \lambda)I_3 & (\dot{\omega} + \omega \gamma + \lambda)I_3 \end{bmatrix}$$

FIGURE 1: Figure adapted from [HSF04].

We have a dichotomy if \widetilde{A} is diagonal...

^{7.} J. HAUSER, A. SACCON et R. FREZZA. « Achievable motorcycle trajectories ». In : IEEE Conference on Decision and Control. Nassau, Bahamas : IEEE, 2004, 3944–3949 Vol.4.

$$\dot{\mathbf{x}} = \begin{bmatrix} \dot{\mathbf{c}} \\ \ddot{\mathbf{c}} \end{bmatrix} = \begin{bmatrix} 0 & l_3 \\ \lambda l_3 & 0 \end{bmatrix} \mathbf{x} + \begin{bmatrix} 0 \\ -l_3 \end{bmatrix} (\lambda \mathbf{z} - \mathbf{g})$$

So let's make $\widetilde{\mathsf{A}}$ diagonal! Choose :

$$\dot{\gamma} = \lambda - \gamma^2$$

 $\dot{\omega} = \omega^2 - \lambda$

Then we have an exponential dichotomy :

$$\begin{aligned} \zeta &= c - \frac{\dot{c}}{\gamma} & \dot{\zeta} &= \frac{\lambda}{\gamma} (z - \zeta) - \frac{g}{\gamma} \\ \xi &= c + \frac{\dot{c}}{\omega} & \dot{\xi} &= \frac{\lambda}{\omega} (\xi - z) + \frac{g}{\omega} \end{aligned}$$

We achieved the exponential dichotomy by choosing :

$$\dot{\omega}=\omega^2-\lambda$$

This natural frequency ω behaves like a DCM :

- $\cdot \ \lambda$ is an input
- $\cdot \omega$ diverges under constant input

^{8.} Stéphane CARON, Adrien ESCANDE, Leonardo LANARI et Bastien MALLEIN. « Capturability-based Pattern Generation for Walking with Variable Height ». In : IEEE Transactions on Robotics (juil. 2019).

https://en.wikipedia.org/wiki/Duck_test

Divergent component of motion

$$X = \begin{bmatrix} \xi \\ \omega \end{bmatrix} \implies \dot{X} = \frac{1}{\omega} \begin{bmatrix} \lambda I_3 & 0 \\ 0 & \omega^2 \end{bmatrix} X - \frac{1}{\omega} \begin{bmatrix} \lambda I_3 & 0 \\ 0 & \omega \end{bmatrix} \begin{bmatrix} z \\ \lambda \end{bmatrix} + \frac{1}{\omega} \begin{bmatrix} g \\ 0 \end{bmatrix}$$

Nonlinear system.

^{9.} Stéphane CARON. « Biped Stabilization by Linear Feedback of the Variable-Height Inverted Pendulum Model ». submitted. Sept. 2019.

Divergent component of motion

$$X = \begin{bmatrix} \xi \\ \omega \end{bmatrix} \implies \dot{X} = \frac{1}{\omega} \begin{bmatrix} \lambda l_3 & 0 \\ 0 & \omega^2 \end{bmatrix} X - \frac{1}{\omega} \begin{bmatrix} \lambda l_3 & 0 \\ 0 & \omega \end{bmatrix} \begin{bmatrix} z \\ \lambda \end{bmatrix} + \frac{1}{\omega} \begin{bmatrix} g \\ 0 \end{bmatrix}$$

Nonlinear system.

Take its linearized error dynamics :

$$\Delta \dot{x} = \frac{1}{\omega^d} \begin{bmatrix} \lambda^d I_3 & -\ddot{c}^d / \omega^d \\ 0 & 2(\omega^d)^2 \end{bmatrix} \Delta x - \frac{1}{\omega^d} \begin{bmatrix} \lambda^d I_3 & (\xi^d - z^d) \\ 0 & \omega^d \end{bmatrix} \begin{bmatrix} \Delta z \\ \Delta \lambda \end{bmatrix}$$

We are back to $\Delta \dot{x} = A \Delta x + B \Delta u$.

^{9.} Stéphane CARON. « Biped Stabilization by Linear Feedback of the Variable-Height Inverted Pendulum Model ». submitted. Sept. 2019.

Place poles of the closed-loop system :

$$\Delta \dot{x}^* = (1-k) \frac{1}{\omega^d} \begin{bmatrix} \lambda^d I_3 & 0\\ 0 & (\omega^d)^2 \end{bmatrix} \Delta x$$

Minimize : $\|\Delta \dot{x} - \Delta \dot{x}^*\|^2$ Subject to :

- Linearized dynamics : $\Delta \dot{x} = A \Delta x + B \Delta u$
- ZMP support area : $C(z^d + \Delta z) \leq d$
- Reaction force : $\lambda_{min} \leq \lambda^d + \Delta \lambda \leq \lambda_{max}$
- Kinematics : $h_{min} \leq \xi_z^d + \Delta \xi_z \leq h_{max}$

Least squares problem :

 \Rightarrow Constrained optimal gains $\Delta u = -K\Delta x$

https://github.com/stephane-caron/pymanoid/blob/master/examples/vhip_stabilization.py

One last observation : previously, the DCM was a measure :

Now, the controller adjusts the DCM based on state and constraints :

TESTS ON HRP-4

FORCE CONTROL

LIP tracking

VHIP tracking

https://github.com/stephane-caron/vhip_walking_controller

BALANCE CONTROL

https://github.com/stephane-caron/vhip_walking_controller

WRAP-UP

- Ground zero : $\dot{x} = \lambda x$
- Linear time invariant : $\dot{x} = Ax$
- Linear feedback : $\dot{x} = Ax + Bu$
- Diagonalize A : apply feedback to divergent components
- General case : exponential dichotomy
- If it looks like a DCM, it is a DCM !
- Linearized error dynamics
- Least-squares pole placement
- Ask the robot!

Thank you for your attention!

Thanks to Dr Kajita and Mr Vasalya for correcting my mistakes in previous versions of these slides, and to Dr Escande for suggesting improvements.

Discussion:https://scaron.info/talks/jrl-2019.html#discussion

REFERENCES I

[Car+19]	Stéphane Caron, Adrien Escande, Leonardo Lanari et Bastien Mallein.
	« Capturability-based Pattern Generation for Walking with Variable Height ». In : IEEE
	Transactions on Robotics (juil. 2019).

- [Car19] Stéphane CARON. « Biped Stabilization by Linear Feedback of the Variable-Height Inverted Pendulum Model ». submitted. Sept. 2019.
- [Cop78] William A. COPPEL. Dichotomies in stability theory. Lecture notes in mathematics 629. OCLC: 3609707. Berlin: Springer, 1978. 97 p.
- [HHL14] Michael A. HOPKINS, Dennis W. HONG et Alexander LEONESSA. « Humanoid locomotion on uneven terrain using the time-varying Divergent Component of Motion ». In : IEEE-RAS International Conference on Humanoid Robots. IEEE, 2014, p. 266–272.
- [HSF04] J. HAUSER, A. SACCON et R. FREZZA. « Achievable motorcycle trajectories ». In : IEEE Conference on Decision and Control. Nassau, Bahamas : IEEE, 2004, 3944–3949 Vol.4.
- [Kaj+01] Shuuji KAJITA, Fumio KANEHIRO, Kenji KANEKO, Kazuhito YOKOI et Hirohisa HIRUKAWA. « The 3D Linear Inverted Pendulum Mode : A simple modeling for a biped walking pattern generation ». In : IEEE/RSJ International Conference on Intelligent Robots and Systems. 2001.

- [Kaj+10] Shuuji KAJITA, Mitsuharu MORISAWA, Kanako MIURA, Shin'ichiro NAKAOKA, Kensuke HARADA, Kenji KANEKO, Fumio KANEHIRO et Kazuhito YOKOI. « Biped walking stabilization based on linear inverted pendulum tracking ». In : IEEE/RSJ International Conference on Intelligent Robots and Systems. 2010.
- [KPT16] Twan KOOLEN, Michael POSA et Russ TEDRAKE. « Balance control using center of mass height variation : Limitations imposed by unilateral contact ». In : IEEE-RAS International Conference on Humanoid Robots. 2016.
- [Sug09] Tomomichi SUGIHARA. « Standing stabilizability and stepping maneuver in planar bipedalism based on the best COM-ZMP regulator ». In : *IEEE International Conference* on Robotics and Automation. 2009.