WALKING AND STAIR CLIMBING CONTROLLER FOR LOCOMOTION IN AN AIRCRAFT FACTORY BY THE HRP-4 HUMANOID ROBOT

Stéphane Caron

June 5, 2019

Talk given at the NASA-Caltech Jet Propulsion Laboratory

MOTOR INTELLIGENCE

Chess :

- 1956 : simplified rules, beats novice
- **1967 :** full rules, wins tournament
- 1981 : beats master in tournament
- 1997 : beats world champion

Robot Soccer World Cup (Robocup)

« ... to develop a team of humanoid robots that is able to win against the official human World Soccer Champion team until 2050. »

- Established in 1996
- Still simplified rules in 2019
- · Yearly update towards human rules

Public demonstration in 1998 :

- Zero-tilting Moment Point (ZMP) control
- Ground reaction force control
- Impact absorption (SEA before SEA) :

^{1.} Kazuo HIRAI, Masato HIROSE, Yuji HAIKAWA et Toru TAKENAKA. « The development of Honda humanoid robot ». In : IEEE International Conference on Robotics and Automation. 1998.

KAWADA HRP-4 HUMANOID ROBOT

Mechanical flexibility at the ankles

^{2.} Kenji KANEKO, Fumio KANEHIRO, Mitsuharu MORISAWA, Kazuhiko AKACHI, Gou MIYAMORI, Atsushi HAYASHI et Noriyuki KANEHIRA. « Humanoid robot HRP-4 - Humanoid Robotics Platform with Lightweight and Slim Body ». In : *IEEE/RSJ International Conf. on Intelligent Robots and Systems*. 2011.

ON-SITE DEMO AT AIRBUS SAINT-NAZAIRE

FIGURE 1: Locomotion, balancing and manipulation to achieve the use case

Source code: https://github.com/stephane-caron/lipm_walking_controller/

PHYSICS : FROM SIMPLE TO COMPLEX

Newton's second law

 $m\ddot{c} = mg + F$

- *m* : total mass
- c : center of mass (CoM)
- g : acceleration due to gravity
- F : external force

Newton-Euler equations (2D)

$$m\ddot{c} = mg + F$$
$$l\ddot{\theta} = (p - c) \times F$$

- I : moment of inertia around the CoM
- + $\dot{\theta}$: angular velocity around the CoM
- *p* : contact point
- F : external force

Equation of motion

$$M\ddot{q} = G + S^{\mathsf{T}}\tau + J^{\mathsf{T}}F$$

- *n* : number of actuated joints
- q : generalized coordinates (n + 6)
- *M* : inertia matrix $(n+6)^2$
- G : gravity and nonlinear effects
- + au : actuated joint torques
- J : contact Jacobian
- F : external forces

CONTROL : FROM COMPLEX TO SIMPLE

TASK FUNCTION APPROACH

FIGURE 2: Control task targets rather than generalized coordinates

If motors can produce $\tau \in \mathbb{R}^n$, equation of motion reduces to Newton-Euler again :

Equation of motion

 $m\ddot{c} = mg + \sum_{i} F_{i}$ $\dot{L}_{c} = \sum_{i} (p_{i} - c) \times F_{i}$

- L_c : angular momentum around c
- p_i : application point of force F_i

^{3.} David E. ORIN, Ambarish Goswamı et Sung-Hee LEE. « Centroidal dynamics of a humanoid robot ». In : *Autonomous Robots* 35.2 (oct. 2013).

CHOICE OF ANGULAR MOMENTUM

FIGURE 3: Net contact force does not go through CoM $\Rightarrow \dot{L} = l\ddot{\theta} > 0$, body rotates and translates

FIGURE 4 : Net contact force goes through CoM $\Rightarrow \dot{L} = 0$, body translates only, no rotation

Bottom line

A constant angular momentum reduces the system to translation

Center of pressure (CoP)

Point C on the contact surface where the resultant of *pressure* forces F^p is applied.

Zero-tilting Moment Point (ZMP)

Points *Z* where the moment of the contact wrench is aligned with the contact normal *n*.

- Informally : the ZMP is the point where the net contact force is applied.
- Formally : the ZMP axis intersects the contact surface at the CoP.

^{4.} P. SARDAIN et G. BESSONNET. « Forces acting on a biped robot. center of pressure-zero moment point ». In : *IEEE Transactions on Systems, Man and Cybernetics, Part A* : *Systems and Humans* 34.5 (2004).

LINEAR INVERTED PENDULUM MODE

- Constant angular momentum $\dot{L}_c=0$
- Constant CoM height $c^z = h$

Equation of motion

 $\ddot{c} = \omega^2 (c - p)$

- $\cdot \omega^2 = g/h$ is a constant
- p : zero-tilting moment point (ZMP)

^{5.} Shuuji KAJITA, Fumio KANEHIRO, Kenji KANEKO, Kazuhito YOKOI et Hirohisa HIRUKAWA. « The 3D Linear Inverted Pendulum Mode : A simple modeling for a biped walking pattern generation ». In : IEEE/RSJ International Conference on Intelligent Robots and Systems. 2001.

COMPARISON TO A CLASSICAL EXAMPLE

Equation of motion

$$\ddot{\theta} \approx \omega^2 (\theta - p)$$

- $p \propto \ddot{x}$ is a discrete action
- x is unconstrained
- $\cdot \ heta$ may go down to $\pm \pi$

Equation of motion

$$\ddot{c} = \omega^2 (c - p)$$

- $\cdot p$ is a hybrid continuous action
- *p* is constrained to the foot sole
- \cdot c may diverge to $\pm\infty$

- Linear inverted pendulum mode : $\ddot{c} = \omega^2 (c p)$
- Divergent component of motion : $\xi := c + \frac{\dot{c}}{\omega}$

Equation of motion

$$\dot{\xi} = \omega(\xi - p)$$

- Maximizes basin of attraction among linear feedback controllers [Sug09]
- Boundedness condition [LHM14]

^{6.} TOru TAKENAKA, Takashi MATSUMOTO et Takahide YOSHIKE. « Real time motion generation and control for biped robot-1st report : Walking gait pattern generation ». In : *IEEE/RSJ International Conference on Intelligent Robots and Systems*. 2009.

WALKING PATTERN GENERATION

LINEAR MODEL PREDICTIVE CONTROL

Cost function

- Track desired ZMP reference
- Track desired CoM velocity
- Minimize CoM jerk

Constraints

- Consistency : equation of motion
- Feasibility : ZMP in support area
- Viability : terminal DCM

^{7.} Pierre-Brice WIEBER. « Trajectory free linear model predictive control for stable walking in the presence of strong perturbations ». In : *IEEE-RAS International Conference on Humanoid Robots*. 2006.

$$\begin{split} \min_{\substack{\vec{c} \in [1...N] \\ \vec{c} \in [1...N]}} & w_z \sum_{k=1}^{N} \|p[k] - p^d[k]\|^2 + w_v \sum_{k=1}^{N} \|\dot{c}[k] - \dot{c}^d[k]\|^2 + w_j \sum_{k=1}^{N} \|\ddot{c}[k]\|^2 \\ \text{s.t. } \forall k & c[k+1] = c[k] + T\dot{c}[k] + \frac{T^2}{2}\ddot{c}[k] + \frac{T^3}{6}\ddot{c}[k] \\ \dot{c}[k+1] = \dot{c}[k] + T\ddot{c}[k] + \frac{T^2}{2}\ddot{c}[k] \\ \ddot{c}[k+1] = \ddot{c}[k] + T\ddot{c}[k] \\ \text{Equation of motion : } p[k] = c[k] - \frac{\ddot{c}[k]}{\omega^2} \\ \text{Feasibility : } p_{\min}[k] \le p[k] \le p_{\max}[k] \\ \text{Viability : } c[N] + \frac{\dot{c}[N]}{\omega} = \xi^d[N] \end{split}$$

^{8.} Pierre-Brice WIEBER. « Trajectory free linear model predictive control for stable walking in the presence of strong perturbations ». In : IEEE-RAS International Conference on Humanoid Robots. 2006.

FIGURE 5: Stair climbing motion in mc_rtc

WALKING STABILIZATION

Actuated joints converge but unactuated floating base diverges :

Planned motion

On robot without stabilization

VISUALIZATION

FIGURE 6: Standing stabilization under external forces

LET US REVIEW THE FACTS

- The floating base is unactuated
- We can control it via the CoM and Newton-Euler equations
- In the LIPM, they are reduced to :

$$\ddot{c} = \omega^2 (c - p)$$

• Feedback is realized by **indirect force control** of the ZMP :

$$p = pd - k_p(cd - c) - k_d(\dot{c}^d - \dot{c})$$

• Best control is by DCM feedback :

$$p = p^d - k(\xi^d - \xi)$$

... but our robot is **position-controlled**?

Split control into two components :

Admittance control

Change position targets in order to track desired forces

DCM feedback control

Assuming force control, decide reaction forces that drive the floating base

Admittance control strategies for different components of the net contact wrench :

- CoP at each contact [Kaj+01b]
- Pressure distribution [Kaj+10]
- CoM admittance control [Nag99]

- Rotate end-effector to move its CoP
- Assumes compliance at contact :

 $\tau = K_e(\theta - \theta_e)$

• Apply damping control :

 $\dot{\theta} = A_{cop}(\tau_d - \tau)$

· Closed-loop behavior has $au
ightarrow au_d$

Figure adapted from [Kaj+01b]

^{9.} Shuuji KAJITA, Kazuhito YOKOI, Muneharu SAIGO et Kazuo TANIE. « Balancing a Humanoid Robot Using Backdrive Concerned Torque Control and Direct Angular Momentum Feedback ». In : *IEEE International Conference on Robotics and Automation*. 2001.

• Net vertical force compensates gravity \Rightarrow only need to control :

$$\Delta f_z = f_{Rz} - f_{Lz}$$

- Push down with foot that needs more pressure, lift the other one
- Apply damping control :

$$\dot{z}_{ctrl} = A_z (\Delta f_{zd} - \Delta f_z)$$

Figure adapted from [Kaj+10]

^{10.} Shuuji KAJITA, Mitsuharu MORISAWA, Kanako MIURA, Shin'ichiro NAKAOKA, Kensuke HARADA, Kenji KANEKO, Fumio KANEHIRO et Kazuhito YOKOI. « Biped walking stabilization based on linear inverted pendulum tracking ». In : IEEE/RSJ International Conference on Intelligent Robots and Systems. 2010.

• Accelerate CoM against ZMP error :

 $\ddot{c} = A_c(p - p_d)$

- Amounts to translational hip strategy
- **Counterintuitive :** if you fall forward, accelerate forward !

^{11.} Ken'ichiro NAGASAKA. « Whole-body Motion Generation for a Humanoid Robot by Dynamics Filters ». In : *PhD thesis* (1999). The University of Tokyo, in Japanese.

Which ones to choose?

End-effector strategies

- CoP at each contact [Kaj+01b]
- Pressure distribution [Kaj+10]

... are sufficient to control the net wrench, yet :

CoM admittance control [Nag99]

- uses other joints, *e.g.* hips
- helps recover from ZMP saturation

FIGURE 7 : Top : no CoM admittance control. Bottom : with $A_c = 20$ [Hz²].

Source code: https://github.com/stephane-caron/lipm_walking_controller/

WHAT HAVE WE SEEN?

- Physics : from a simple to complex system
- Control : distribute complexity, simple high level

- Body: task function approach
- Spine : stabilization by DCM feedback
- Brain : model predictive control

Thank you for your attention!

REFERENCES I

- [Hir+98] Kazuo HIRAI, Masato HIROSE, Yuji HAIKAWA et Toru TAKENAKA. « The development of Honda humanoid robot ». In : IEEE International Conference on Robotics and Automation. 1998.
- [Kaj+01a] Shuuji KAJITA, Fumio KANEHIRO, Kenji KANEKO, Kazuhito YOKOI et Hirohisa HIRUKAWA. «The 3D Linear Inverted Pendulum Mode : A simple modeling for a biped walking pattern generation ». In : IEEE/RSJ International Conference on Intelligent Robots and Systems. 2001.
- [Kaj+01b] Shuuji KAJITA, Kazuhito Yokoi, Muneharu SAIGO et Kazuo TANIE. « Balancing a Humanoid Robot Using Backdrive Concerned Torque Control and Direct Angular Momentum Feedback ». In : IEEE International Conference on Robotics and Automation. 2001.
- [Kaj+10] Shuuji KAJITA, Mitsuharu MORISAWA, Kanako MIURA, Shin'ichiro NAKAOKA, Kensuke HARADA, Kenji KANEKO, Fumio KANEHIRO et Kazuhito YokoI. « Biped walking stabilization based on linear inverted pendulum tracking ». In : IEEE/RSJ International Conference on Intelligent Robots and Systems. 2010.
- [Kan+11] Kenji KANEKO, Fumio KANEHIRO, Mitsuharu MORISAWA, Kazuhiko AKACHI, Gou MIYAMORI, Atsushi HAYASHI et Noriyuki KANEHIRA. « Humanoid robot HRP-4 - Humanoid Robotics Platform with Lightweight and Slim Body ». In : IEEE/RSJ International Conf. on Intelligent Robots and Systems. 2011.

REFERENCES II

[LHM14]	Leonardo LANARI, Seth HUTCHINSON et Luca MARCHIONNI. « Boundedness issues in planning of locomotion trajectories for biped robots ». In : <i>IEEE-RAS International Conference on Humanoid Robots</i> . 2014.
[Nag99]	Ken'ichiro Nagasaка. « Whole-body Motion Generation for a Humanoid Robot by Dynamics Filters ». In : <i>PhD thesis</i> (1999). The University of Tokyo, in Japanese.
[OGL13]	David E. ORIN, Ambarish Goswamı et Sung-Hee LEE. « Centroidal dynamics of a humanoid robot ». In : <i>Autonomous Robots</i> 35.2 (oct. 2013).
[SB04]	P. SARDAIN et G. BESSONNET. « Forces acting on a biped robot, center of pressure-zero moment point ». In : IEEE Transactions on Systems, Man and Cybernetics, Part A : Systems and Humans 34.5 (2004).
[Sug09]	Tomomichi SUGIHARA. « Standing stabilizability and stepping maneuver in planar bipedalism based on the best COM-ZMP regulator ». In : <i>IEEE International</i> <i>Conference on Robotics and Automation</i> . 2009.
[TMY09]	Toru Такелака, Takashi Matsumoto et Takahide Yosнике. « Real time motion generation and control for biped robot-1st report : Walking gait pattern generation ». In : IEEE/RSJ International Conference on Intelligent Robots and Systems. 2009.
[Wie06]	Pierre-Brice WIEBER. « Trajectory free linear model predictive control for stable walking in the presence of strong perturbations ». In : IEEE-RAS International Conference on Humanoid Robots. 2006.