ZMP SUPPORT AREAS FOR MULTI-CONTACT LOCOMOTION

Stéphane Caron

LIRMM, CNRS / U. Montpellier

Seminar @ **LAAS Gepetto**

May 30, 2016

• Start from a footstep plan

- Start from a footstep plan
- Regulate system dynamics around the <u>Linear Inverted Pendulum Mode</u> (LIPM)

- Start from a footstep plan
- Regulate system dynamics around the <u>Linear Inverted Pendulum Mode</u> (LIPM)
- LIPM has simplified:
 - Dynamics: $\ddot{x}_G = \omega^2(x_G x_Z)$
 - Contact stability criterion:ZMP inside the support polygon

- Start from a footstep plan
- Regulate system dynamics around the <u>Linear Inverted Pendulum Mode</u> (LIPM)
- LIPM has simplified:
 - Dynamics: $\ddot{x}_G = \omega^2(x_G x_Z)$
 - Contact stability criterion:ZMP inside the support polygon
- Plan a trajectory for the pendulum

- Start from a footstep plan
- Regulate system dynamics around the <u>Linear Inverted Pendulum Mode</u>
 (LIPM)
- LIPM has simplified:
 - Dynamics: $\ddot{x}_G = \omega^2(x_G x_Z)$
 - Contact stability criterion:ZMP inside the support polygon
- Plan a trajectory for the pendulum
- Send it as reference to a whole-body controller

QUESTION

ZERO-TILTING MOMENT POINT

Definition

The ZMP is traditionally defined as the point *on the floor* where the moment of the contact wrench is parallel to the surface normal (Sardain & Bessonnet, 2004).

Intuition

The point at which the robot "applies its weight".

Contact stability

The ZMP must lie inside the support polygon (convex hull of ground contact points).¹

LIMITATIONS

- This definition requires a single "floor" surface (no multi-contact)
- The support polygon does not account for frictional limits (slippage, yaw rotations).

CONTACT STABILITY

How to receive forces from the environment?

Weak Contact Stability

A motion or wrench is *weak contact stable* iff it can be realized by contact forces inside their friction cones.

Contact Wrench Cone

Friction cones can be combined as Contact Wrench Cone (CWC) at the COM—see e.g. (Caron et al., 2015). By construction,

$$w \in \text{CWC} \Leftrightarrow \exists \{f_i \in \text{FC}_i\}, \oplus f_i = w.$$

ZMP OF A WRENCH

The ZMP is mathematically defined from a wrench (Sardain & Bessonnet, 2004). The ZMP in the plane $\Pi(O, n)$ of normal n containing O is the point such that $n \times \tau_Z = 0$:

$$x_Z = rac{n imes au_O}{n \cdot f} + x_O.$$

We define the *full support area* S as the image of the CWC by this equation.

CONTRIBUTION 1

Good news! The image of the CWC can be computed geometrically:

CONTRIBUTION 1

Bad news! It is not always a polygon:

CENTROIDAL DYNAMICS

The **Newton-Euler equations** of the system are:

$$\left[egin{array}{c} m\ddot{x}_G \ \dot{L}_G \end{array}
ight] = \left[egin{array}{c} mg \ 0 \end{array}
ight] + \sum_{ ext{contact }i} \left[egin{array}{c} f_i \ \overrightarrow{GC}_i imes f_i \end{array}
ight]$$

- *m* and *g*: total mass and gravity vector
- \ddot{x}_G : acceleration of the <u>center of mass</u> (COM)
- \dot{L}_G : rate of change of the **angular momentum**
- f_i : contact force received at contact point C_i

They show how the motion of unactuated DOFs results from interactions with the environment.

LINEAR PENDULUM MODE

The Newton equation can be written equivalently:

$$\ddot{x}_G = rac{g + \ddot{z}_G}{z_G - z_Z}(x_G - x_Z) - rac{\dot{L}_{Gx}}{m(z_G - z_Z)}$$

where x now denotes X-Y plane coordinates. The Linear Inverted Pendulum Mode (Kajita et al., 2001) is obtained by constraining:

$$egin{array}{lcl} z_G - z_Z & = & h \ \dot{L}_G & = & 0 \end{array}$$

The system dynamics become $\ddot{x}_G = \frac{g}{h}(x_Z - x_G)$.

OBSERVATION

The support area in the LIPM is *smaller* than the convex hull of contact points:

CONTRIBUTION 2

We provide an algorithm to compute the support area corresponding to the system:

$$egin{array}{lcl} w & \in & \mathrm{CWC} \ z_G - z_Z & = & h \ \dot{L}_G & = & 0 \end{array}$$

We call it the *pendular support area*.

LINEAR PENDULUM MODE

We can now consider the ZMP *above* the COM \Rightarrow Linear (non-inverted) Pendulum Mode:

$$\ddot{x}_G \ = \ rac{g}{h}(x_G-x_Z)$$

This is the dynamic equation of a spring.

Attractivity

- LIPM: the ZMP is a **repellor** of the COM
- LPM: the ZMP is a marginal **attractor** of the COM

The robot is driven from above, controlling its target position.

MERCI POUR VOTRE ATTENTION.

