
MOTION CONTROL SOFTWARE FOR HOMEMADE ROBOTS

Stéphane Caron
December 6, 2022

1

WHAT WE DO

Software People

Robots

2

EXAMPLE IMPLEMENTATION

3

HOMEMADE ROBOTS

4

5

OFF-THE-SHELF ACTUATORS

Quasi-direct drive:
• Ben Katz’s design for the Mini Cheetah
• Commercially available: mjbots, MAB, ...
• Torque range: cont. 6 Nm, peak 16 Nm
• Price range: 500–600$

Series-elastic:
• Gill Pratt’s design from the 90’s
• Commercially available: HEBI
• Torque range: cont. 10 Nm, peak 20 Nm
• Price range: 3000–5000$

Ben Katz’s blog: https://build-its.blogspot.com/

6

https://build-its.blogspot.com/

MJBOTS STACK

Store: https://mjbots.com/

7

https://mjbots.com/

UPKIE

Wheeled biped:
• Joints: 6 (hips, knees, wheels)
• Total mass: 5.4 kg
• Print time: 33 h 14 min
• Knee torques: 2.0 Nm crouched
• Wheel torques: 0.2 + f(α) Nm
• Autonomy: 3–4 h with 5.0 Ah battery
• Actuators + electronics: 2,600 €

https://hackaday.io/project/185729-upkie-homemade-wheeled-biped-robot

8

https://hackaday.io/project/185729-upkie-homemade-wheeled-biped-robot

PRINTABLES

https://www.printables.com/model/127831-upkie-wheeled-biped-robot

9

https://www.printables.com/model/127831-upkie-wheeled-biped-robot

WHY BUILD OUR OWN?

Research:
• Explore new morphologies, e.g. flywheels
• Fit robot to studied question

Research engineering:
• Shorter dev. cycles
• Larger number of similar users1

Perhaps more importantly, incentives:
• Less afraid to break robots
• Less afraid to be broken by robots

1Increase collaborative surface, e.g. on https://github.com/

10

https://github.com/

MOTION CONTROL SOFTWARE

WHAT IS MOTION CONTROL?

Make a robot move (motion) to achieve some tasks (control).

Examples:

• Locomotion: change position w.r.t. the world
• Manipulation: change the pose of an object w.r.t. the robot
• Folding: change the configuration of a deformable object
• Breaking: add free-flyer joint to another system ;)

Key part of the work: task formulation.

11

MOTION CONTROL SOFTWARE

Software to implement motion control.

Part of it is specialized:

• Robot descriptions: URDF, MJCF, SDFormat, ...
• Lie algebra: Rotations SO(3), transformations SE(3), twists se(3), ...
• Rigid body dynamics: Forward kinematics, inverse dynamics, ...
• Physics simulators: AISTsimulator, Bullet, MuJoCo, RaiSim, ...
• Optimal control: Model predictive control, reinforcement learning, ...

A lot of it is more general, e.g.:

• Timers and loop frequency regulation
• Logging and analysis of time series data
• Build systems, packaging and continuous integration
• Serial (I2C, SPI, ...) and data-comms protocols (CAN-FD, EtherCat, ...)

12

SCOPE

Today’s scope

Motion control software for research projects.

(Not in today’s scope: motion control software for production.)

13

THE POWER OF COLLABORATION

GitHub Packaging system

git clone this-repo-I-try pip install this-pkg-I-use

(or s/pip/conda ...)

14

INTERLUDE 1: ROBOT DESCRIPTIONS

ROBOT DESCRIPTIONS

Load a robot description:

from robot_descriptions.loaders.pinocchio import load_robot_description

robot = load_robot_description("upkie_description")

Visualize it:

from pinocchio.visualize import MeshcatVisualizer

robot.setVisualizer(MeshcatVisualizer())
robot.initViewer(open=True)
robot.loadViewerModel()
robot.display(robot.q0)

Setup: pip install meshcat pin robot_descriptions

15

OPEN SOURCE ROBOT DESCRIPTIONS

Choose a description for the rest of this presentation:

List: https://github.com/robot-descriptions/robot_descriptions.py

16

https://github.com/robot-descriptions/robot_descriptions.py

C++/PYTHON MOTION CONTROL SOFTWARE

TWO PROGRAMMING LANGUAGES

Pros:
• Faster programs
• Type system

Cons:
• Build complexity
• No packaging system

Pros:
• Packaging system(s)
• Thriving ecosystem

Cons:
• Slower interpreted code
• Real-timeness?

Not covered today: Rust and Julia.

17

C++/PYTHON CODE

A common approach is to use bindings2:

• Pro: Performance
• Con: Overhead when API changes

An alternative is interface description languages:

• Pro: Versioning, breaking-change detection
• Con: Overhead when API changes

Can we do better for prototyping?

2For instance nanobind: https://github.com/wjakob/nanobind

18

https://github.com/wjakob/nanobind

VULP PROTOCOL

Agent

action
dictionary

observation
dictionary

Spine

1–400 Hz

process 2

10–1000 Hz

{
 "imu": {
 "linear_acceleration": [
 0.10456651449203491,
 0.1155887097120285,
 -0.19683143496513367
],
 "angular_velocity": [
 -0.018338500218555813,
 -0.0048945160966859975,
 0.013782314291377813
],
 },
 "servo": {
 "left_hip": {
 "voltage": 19,
 "velocity": -0.0188,
 "torque": -0.73,
 "q_current": -1.90,
 "mode": 10,
 "temperature": 22,
 "position": -0.637,
 "fault": 0,
 "d_current": -0.2
 },
 "right_hip": {
 "voltage": 18.5,
 "velocity": 0.0486,
 "torque": 0.62,
 "q_current": 1.8,
 "mode": 10,
 "temperature": 22,
 "position": 0.638,
 "fault": 0,
 ...

{
 "servo": {
 "left_hip": {
 "position": -0.6597,
 "velocity": 6.0939e-06,
 "kp_scale": 2.0,
 "kd_scale": 1.7
 },
 "left_knee": {
 "position": 1.0698,
 "velocity": -2.5212e-05,
 "kp_scale": 2.0,
 "kd_scale": 1.7
 },
 "left_wheel": {
 "position": null,
 "velocity": -2.6646
 },
 "right_wheel": {
 "position": null,
 "velocity": 2.66464
 }
 "right_hip": {
 "position": 0.658,
 "velocity": -5.149,
 "kp_scale": 2.0,
 "kd_scale": 1.7
 },
 "right_knee": {
 "position": -1.070,
 "velocity": 2.1e-05,
 "kp_scale": 2.0,
 "kd_scale": 1.7
 },
 ...

simulation real thing

process 1

19

VULP

Vulp is an inter-process communication (IPC) protocol:

• Lightweight: fits in a 6-state, 14-transition state machine
• Based on dictionaries for serialization/logging
• Reference libraries in C++, Python, (Rust?), (Julia?), ...

Vulp is designed to:

• Start prototyping in a high-level language like Python
• Move to C++ as needed for performance
• Provide a simulation/real switch

We will see why this is suited to balancing in particular.

Repository: https://github.com/tasts-robots/vulp

20

https://github.com/tasts-robots/vulp

UPKIE LOCOMOTION

Vulp comes batteries included:

git clone https://github.com/tasts-robots/upkie_locomotion.git
cd upkie_locomotion
./tools/bazelisk run -c opt //agents/blue_balancer:bullet

Bazel will download and build everything (no installation required).

Battery warning for attendees: the first build is consuming.

Repository: https://github.com/tasts-robots/upkie_locomotion

21

https://github.com/tasts-robots/upkie_locomotion

REAL-TIME IN PYTHON?

Definition
Real-time: of a system that responds to events within a predictable time.

Can Python execute control-critical code with predictable timings?

Let’s run an experiment:

• Agent (Python) running at 200 Hz:
• Inverse kinematics by quadratic programming
• Wheeled balance control

• Spine (C++) running at 1,000 Hz:
• Joint controller: moteus position/velocity/torque
• State observers: floor contact, wheel odometry
• I/O: logging, joystick, temperature

Run on a Raspberry Pi Model B (Quad core ARM Cortex-A72 @ 1.5GHz) using
the default Raspberry Pi OS kernel (no PREEMPT_RT patch).

22

REAL-TIME IN PYTHON

Details: https://github.com/tasts-robots/vulp#performance

23

https://github.com/tasts-robots/vulp#performance

INTERLUDE 2: INVERSE KINEMATICS

INVERSE KINEMATICS

Define IK tasks:

from pink.tasks import BodyTask

tasks = [
BodyTask(f"{leg}_contact", position_cost=1., orientation_cost=1.)
for leg in ("left", "right") # adapt to the robot you picked

]

Initialize task targets:

from pink import apply_configuration

configuration = apply_configuration(robot, robot.q0)
for task in tasks:

task.set_target_from_configuration(configuration)

Setup: pip install pin-pink

24

SCENARIO

Let’s display our targets for convenience:

import meshcat_shapes

for task in tasks:
meshcat_shapes.frame(robot.viewer[f"{task.body}_target"])

And define the trajectory of our task targets:

def update_targets(tasks, t, dt):
for task in tasks:

u = 0.2 * np.array([2.0, 0.0, 1.0])
T = task.transform_target_to_world
T.translation += np.sin(2 * t) * u * dt

frame = robot.viewer[f"{task.body}_target"]
frame.set_transform(T.np)

Setup: pip install meshcat_shapes

25

CLOSED-LOOP INVERSE KINEMATICS

from pink import solve_ik
from loop_rate_limiters import RateLimiter

rate = RateLimiter(frequency=200)
dt = rate.period
for t in np.arange(0., 5., dt):

update_targets(tasks, t, dt)
velocity = solve_ik(

configuration,
tasks,
dt,
solver="proxqp",

)
q = configuration.integrate(velocity, dt)
configuration = apply_configuration(robot, q)
robot.display(q)
rate.sleep()

Setup: pip install loop-rate-limiters proxsuite pin-pink

26

NUMERICAL INVERSE KINEMATICS

Inverse kinematics by numerical optimization:

• Joint limits: position, velocity, acceleration, torque, ...
• Regularization: fully-define behavior by e.g. damping or posture tasks
• Unfeasible targets: handled when task error is large enough3

• Task morphs into a damping task when unfeasible

Tasks can exit the feasibility workspace and re-enter elsewhere.

Achilles’ heel (as of today): feasible target at task singularity.

3Tomomichi Sugihara. “Solvability-unconcerned inverse kinematics by the Levenberg–Marquardt
method”. In: IEEE transactions on robotics 27.5 (2011), pp. 984–991.

27

CONTROLLERS USING INVERSE KINEMATICS

Figure 1: LIPM walking controller Figure 2: Pink controller

28

BALANCE CONTROL

MOTIVATION

Plan(t+∆t) Simulation(t+∆t) Real(t+∆t)

29

MODELING

• Whole-body dynamics:

Mq̈ +N = ST τ + JT f

• Centroidal dynamics:

c̈ =
1

m

∑
i

fi

L̇c =
∑
i

(pi − c)× fi

• Linear inverted pendulum:

c̈ = ω2(c− z)

with ω2 = g/h and z the ZMP

30

LINEAR INVERTED PENDULUM MODE

Assumptions:
• Rigid joints, sufficient power
• Conservation of angular momentum
• Constant CoM height

Equation of motion

c̈ = ω2(c− z)

• ω2 = g/h is a constant
• z: zero-tilting moment point (ZMP)

4

4Shuuji Kajita, Fumio Kanehiro, Kenji Kaneko, Kazuhito Yokoi, and Hirohisa Hirukawa. “The 3D
Linear Inverted Pendulum Mode: A simple modeling for a biped walking pattern generation”. In:
IEEE/RSJ International Conference on Intelligent Robots and Systems. 2001.

31

DIVERGENT COMPONENT OF MOTION

• Linear inverted pendulum:

c̈ = ω2(c− z)

• Divergent component of motion:

ξ = c+
ċ

ω

• Decoupled dynamics:

ξ̇ = ω(ξ − z)

ċ = ω(ξ − c)

• We only need to regulate ξ

5

5Tomomichi Sugihara. “Standing stabilizability and stepping maneuver in planar bipedalism
based on the best COM-ZMP regulator”. In: IEEE International Conference on Robotics and
Automation. 2009.

32

BALANCE CONTROL WITH FEET

• DCM dynamics:

ξ̇ = ω(ξ − z)

• Regulate the ZMP by force control:

z = zd + ξ − k(ξd − ξ)

• Closed loop: ξ → ξd

ξ̇ = kω(ξd − ξ)

• As long as the ZMP target is feasible...

Force control

33

BALANCE CONTROL WITH WHEELS

• DCM dynamics:

ξ̇ = ω(ξ − z)

• Regulate the ZMP by velocity control:

z = zd + ξ − k(ξd − ξ)

• Closed loop: ξ → ξd

ξ̇ = kω(ξd − ξ)

• As long as the ZMP target is feasible...

Velocity control

34

BALANCING IS A LOW FREQUENCY TASK

We can discretize DCM dynamics ξ̇ = ω(ξ − z) with control period δt:

Property6

The maximum ZMP tracking error is not impacted by δt, as long as:

δt ≤ δtmax :=
1

ω
ln

(
1 +

1

k − 1

)

For HRP-4 (ω ≈ 3.5 s−2) with the LIPM walking controller (k = 5), this yields
δtmax = 62.5 ms, i.e. a minimum control frequency of 16 Hz.

This shows that balance control is a low-frequency task (!)

6Nahuel Alejandro Villa, Johannes Englsberger, and Pierre-Brice Wieber. “Sensitivity of legged
balance control to uncertainties and sampling period”. In: IEEE Robotics and Automation Letters 4.4
(2019), pp. 3665–3670.

35

BALANCING AT LOW FREQUENCIES

0 1 2 3 4 5 6
-20

-15

-10

-5

0

5

10

15

20

0 1 2 3 4 5 6
-20

-15

-10

-5

0

5

10

15

20

7

7Nahuel Alejandro Villa, Johannes Englsberger, and Pierre-Brice Wieber. “Sensitivity of legged
balance control to uncertainties and sampling period”. In: IEEE Robotics and Automation Letters 4.4
(2019), pp. 3665–3670.

36

FORCE CONTROL

WITH INVERSE DYNAMICS

Tasks

Inverse Dynamics Control

Commanded
Joint Torques

Joint Measurements
Balance
Control

State
Observation

Observed
DCM

IMU Measurements

Desired
DCM

Desired
Kinematic
Targets

Commanded
Wrench

Observed
State Force Measurements

Motion
Planning

NB: C++/Python icons denote frequency, not actual programming language.

8

8Twan Koolen, Sylvain Bertrand, Gray Thomas, Tomas de Boer, Tingfan Wu, Jesper Smith,
Johannes Englsberger, and Jerry Pratt. “Design of a Momentum-Based Control Framework and
Application to the Humanoid Robot Atlas”. In: International Journal of Humanoid Robotics (2016).

37

INVERSE DYNAMICS

• Whole-body dynamics:

Mq̈ +N = ST τ + JT f

• Linear inverted pendulum task:

c̈ = (Mq̈ +N)[0:3] = ω2(c− zd)

L̇c = (Mq̈ +N)[3:6] = 0

• Solution τ∗ sent to torque controller
• Requires accurate contact estimation
• Always used with some impedance9

9

9Twan Koolen, Sylvain Bertrand, Gray Thomas, Tomas de Boer, Tingfan Wu, Jesper Smith,
Johannes Englsberger, and Jerry Pratt. “Design of a Momentum-Based Control Framework and
Application to the Humanoid Robot Atlas”. In: International Journal of Humanoid Robotics (2016).

38

WITH INVERSE KINEMATICS

Tasks
Motion
Planning

Force
Control

Commanded
Joint Angles

Joint Measurements

Inverse
Kinematics

Balance
Control

State
Observation

Observed
DCM

IMU Measurements

Desired
Kinematic

Targets

Commanded
Wrench

Commanded
Kinematic

Targets

Observed
Wrench Force Measurements

Desired
DCM

NB: C++/Python icons denote frequency, not actual programming language.

10

10Stéphane Caron, Abderrahmane Kheddar, and Olivier Tempier. “Stair Climbing Stabilization of the
HRP-4 Humanoid Robot using Whole-body Admittance Control”. In: IEEE International Conference
on Robotics and Automation. May 2019.

39

CONTACT FLEXIBILITY

• Linear model:

τ = Ke(θ − θe)

• Damping control:

θ̇ = A(τd − τ)

• Closed-loop behavior:

τ̇ = AKe(τ
d − τ)

• Closed-loop stability: AKe > 0
Figure adapted from [Kaj+01b]

11

11Shuuji Kajita, Kazuhito Yokoi, Muneharu Saigo, and Kazuo Tanie. “Balancing a Humanoid Robot
Using Backdrive Concerned Torque Control and Direct Angular Momentum Feedback”. In: IEEE
International Conference on Robotics and Automation. 2001.

40

DISCRETIZED CONTACT FLEXIBILITY

• Damping control:

θ̇[k] = A(τd − τ [k])

• Closed-loop behavior for τd = 0:

τ [k + 1] = (1−AKeδt)τ [k]

Closed-loop stability condition

Aδt <
2

Ke

• Lowering Ke ⇒ larger A or δt
• Force control can be low frequency

Figure adapted from [Kaj+01b]

Writeup: https://scaron.info/robot-locomotion/contact-flexibility.html

41

https://scaron.info/robot-locomotion/contact-flexibility.html

FULL PYTHON PIPELINE

Tasks
Motion
Planning

Commanded
Joint Angles
& Velocities

Encoder Measurements

Inverse Kinematics

Balance
Control

State
Observation

Observed
Base Tilt

IMU Measurements

Desired
Kinematic

Targets

Commanded
Wheel Velocities Torque Measurements

Desired
Base Tilt

NB: C++/Python icons denote frequency, not actual programming language.

42

WHAT DID WE SEE?

WHAT DID WE SEE?

Homemade robots:

• Has become easier to build dedicated HW for research projects
• Robots we are not afraid to break

Software for research projects:

• Collaborate on GitHub, release packages
• C++ when needed, higher-level language otherwise

Combining C++ and Python for motion control:

• Vulp action-observation loop with dictionaries
• Python can perform real-timely at low frequencies
• Several tasks, like balancing, are low frequency

43

THANK YOU FOR YOUR ATTENTION!

44

Bibliography

REFERENCES I

[CKT19] Stéphane Caron, Abderrahmane Kheddar, and Olivier Tempier. “Stair Climbing
Stabilization of the HRP-4 Humanoid Robot using Whole-body Admittance Control”.
In: IEEE International Conference on Robotics and Automation. May 2019.

[Kaj+01a] Shuuji Kajita, Fumio Kanehiro, Kenji Kaneko, Kazuhito Yokoi, and Hirohisa Hirukawa.
“The 3D Linear Inverted Pendulum Mode: A simple modeling for a biped walking
pattern generation”. In: IEEE/RSJ International Conference on Intelligent Robots and
Systems. 2001.

[Kaj+01b] Shuuji Kajita, Kazuhito Yokoi, Muneharu Saigo, and Kazuo Tanie. “Balancing a
Humanoid Robot Using Backdrive Concerned Torque Control and Direct Angular
Momentum Feedback”. In: IEEE International Conference on Robotics and
Automation. 2001.

[Koo+16] Twan Koolen, Sylvain Bertrand, Gray Thomas, Tomas de Boer, Tingfan Wu,
Jesper Smith, Johannes Englsberger, and Jerry Pratt. “Design of a Momentum-Based
Control Framework and Application to the Humanoid Robot Atlas”. In: International
Journal of Humanoid Robotics (2016).

[Sug09] Tomomichi Sugihara. “Standing stabilizability and stepping maneuver in planar
bipedalism based on the best COM-ZMP regulator”. In: IEEE International Conference
on Robotics and Automation. 2009.

45

REFERENCES II

[Sug11] Tomomichi Sugihara. “Solvability-unconcerned inverse kinematics by the
Levenberg–Marquardt method”. In: IEEE transactions on robotics 27.5 (2011),
pp. 984–991.

[VEW19] Nahuel Alejandro Villa, Johannes Englsberger, and Pierre-Brice Wieber. “Sensitivity of
legged balance control to uncertainties and sampling period”. In: IEEE Robotics and
Automation Letters 4.4 (2019), pp. 3665–3670.

46

	Homemade robots
	Motion control software
	Interlude 1: Robot descriptions
	C++/Python motion control software
	Interlude 2: inverse kinematics
	Balance control
	Force control
	What did we see?
	Bibliography

