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MOTIVATION



Quadratic programming for stair climbing

LIPM walking controller1 = revisit Kajita et al. with QPs:
• QP1: linear model predictive control (ups [Kaj+03])
• QP2: wrench distribution (ups [Kaj+10])
• QP3: inverse kinematics (ups [Kaj+10])

Two consequences:
• Explicit cost functions
• Behavior switches on constraint saturation

Figure 1: Stair climbing at Airbus

1

1Stéphane Caron, Abderrahmane Kheddar, and Olivier Tempier. “Stair Climbing Stabilization of the HRP-4 Humanoid Robot
using Whole-body Admittance Control”. In: IEEE International Conference on Robotics and Automation. May 2019.

Humanoids 2023: NEXT ITERATIONS OF QUADRATIC PROGRAMMING FOR ADAPTIVE AND ROBUST MOTION CONTROL 1



LIPM walking controller pipeline
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Quadratic programming for quadrupedal MPC

QP

Linearize model predictive control QP:
• Cost: trajectory tracking + input regularization
• Equality constraints: no force on swing feet
• Inequality constraints: friction cones

2

2Jared Di Carlo, Patrick M Wensing, Benjamin Katz, Gerardo Bledt, and Sangbae Kim. “Dynamic locomotion in the mit cheetah 3
through convex model-predictive control”. In: IEEE/RSJ international conference on intelligent robots and systems. 2018.
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WHY BOTHER WITH QP?



Why bother with quadratic programming?

Cons:

• These works are oldies!
• Whole-body model predictive control has become feasible [Dan+22; KO22; Gra+23]
• RL-trained policies can achieve better robustness [Lee+20; Kum+21]

Pros:

• Quadratic programming is improving: performance, differentiability, ...
• SQP with “one Newton step per cycle” = QP
• Quadratic programming not necessarily ⊥ to nonlinear OC and RL
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Three areas of improvement

1. Runtime and accuracy
2. Handling infeasibility
3. Differentiability
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RUNTIME AND ACCURACY



Quadratic programming

A quadratic program can be generally written as:

minimize
x

1
2x

TPx+ qTx
subject to Gx ≤ h

Ax = b
lb ≤ x ≤ ub

For example in Python:

from qpsolvers import solve_qp

M = np.array([[1., 2., 0.], [-8., 3., 2.], [0., 1., 1.]])
P = M.T @ M # this is a positive definite matrix
q = np.array([3., 2., 3.]) @ M
G = np.array([[1., 2., 1.], [2., 0., 1.], [-1., 2., -1.]])
h = np.array([3., 2., -2.])

x = solve_qp(P, q, G, h, solver="proxqp")

Setup: pip install qpsolvers[open_source_solvers]
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Open source QP solvers

Solver name Algorithm Warm-start Year
CVXOPT Interior point - 2013
ECOS Interior point - 2013
qpOASES Active set yes 2014
quadprog Active set - 2015
SCS Augmented Lagrangian yes 2016
HPIPM Interior point yes 2017
HiGHS Active set - 2017
OSQP Augmented Lagrangian yes 2017
DAQP Active set - 2021
qpSWIFT Interior point - 2021
Clarabel Interior point - 2022
QPALM Augmented Lagrangian yes 2022
ProxQP Augmented Lagrangian yes 2022
PIQP Proximal interior point - 2023
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Benchmarking QP solvers

GitHub: https://github.com/qpsolvers/qpbenchmark
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How to compare solvers?

How can we compare solver performances over whole test sets?
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Summary of existing expert knowledge

3

3Hans Mittelmann. Benchmarks for optimization software. Sept. 8, 2019. URL: http://plato.asu.edu/bench.html.
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Shifted geometric means

The shifted geometric mean of a series Ts = (Ti)ni=1 is:

shgeom(Ts) = n

√∏
i

(Tsi + k)− k

Scaled shifted geometric mean: Ts = Ts/ argmins Ts.

Interpretation
A solver with a scaled shgeom(runtimes) = Y is Y× slower than the best solver.

4

4Hans Mittelmann. Benchmarks for optimization software. Sept. 8, 2019. URL: http://plato.asu.edu/bench.html.
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Don’t trust performance profiles

Figure 2: Time performance profiles for a real test case. Left: three solvers. Right: two solvers.

5

5Nicholas Gould and Jennifer Scott. “A note on performance profiles for benchmarking software”. In: ACM Transactions on
Mathematical Software 43.2 (2016).
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Optimality conditions

Let x∗, y∗, z∗ denote a primal-dual solution to our QP:

• Primal residual: rp := max(∥Ax∗ − b∥∞, [Gx∗ − h]+)
• Dual residual: rd := ∥Px∗ + q+ ATy∗ + GTz∗∥∞
• Duality gap: rg := |x∗TPx∗ + qTx∗ + bTy∗ + hTz∗|

Optimality
The solution (x∗, y∗, z∗) returned by a QP solver is optimal if and only if rp = 0, rd = 0, rg = 0.
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Accuracy of a solution

Accuracy of a solution with absolute ϵabs and relative ϵrel tolerances:

rp ≤ ϵabs + ϵrel max(∥Ax∗∥∞, ∥Gx∗∥∞, ∥b∥∞, ∥h∥∞)

rd ≤ ϵabs + ϵrel max(∥Px∗∥∞, ∥q∥∞, ∥ATy∗∥∞, ∥GTz∗∥∞)

rg ≤ ϵabs + ϵrel max(|x∗TPx∗|, |qTx∗|, |bTy∗|, |hTz∗|)

Contract from the QP solver.6

Default solver accuracies vary a lot: solvers trade off runtime and accuracy.

6OSQP does not check the duality gap and may return false solutions, such as [ODo21, Section 7.2].
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Test sets

Check results for the test sets that interest you:

• Model predictive control: humanoid, quadruped, wheeled biped, ...
https://github.com/qpsolvers/mpc_qpbenchmark

• Maros-Meszaros: standard, 138 difficult problems.
https://github.com/qpsolvers/maros_meszaros_qpbenchmark

• Free-for-all: open to all problems, no restriction.
https://github.com/qpsolvers/free_for_all_qpbenchmark

Propose your own
The benchmark is a qpbenchmark command-line tool: try your own use cases!

Setup: pip install qpbenchmark
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Open questions

Goal of the benchmark:

• What are the best solvers for task ∈ { MPC, IK, ID, ... }?
• What is the ideal runtime/accuracy tradeoff for each task?
• What runtime/accuracy tradeoff can each solver achieve?

Current limitations:

• Cold-start only (#101)
• CPU thermal throttling (#88)
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HANDLING INFEASIBILITY



Open and closed-loop MPC

Recursive feasibility
Guarantee that the optimization problem at the next cycle is feasible.

Figure 3: Open-loop MPC: strong RF doable [CWF17]. Figure 4: Closed-loop MPC: no recursive feasibility?
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ProxQP

• Handles semidefinite P (including P = 0)
• Warm- and hot-starting for e.g. MPC
• Competitive runtime and accuracy perfs
• (Theoretical: global convergence guarantee.)

Property
ProxQP converges to the solution of:

• The QP itself, if it is feasible, or
• The closest feasible QP otherwise.

Never fails: great for real-time control.

7

7Antoine Bambade, Fabian Schramm, Sarah El Kazdadi, Stéphane Caron, Adrien Taylor, and Justin Carpentier. “PROXQP: an
Efficient and Versatile Quadratic Programming Solver for Real-Time Robotics Applications and Beyond”. working paper or
preprint. Sept. 2023. URL: https://inria.hal.science/hal-04198663.
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ProxQP on MPC problems

Linearize model predictive control as a QP:

· Dimensions: n = 50, m = 100
· Time: T = 50 steps, dt = 20 ms
· CPU: Raspberry Pi 4 (1.8 GHz) single-core
· Hot-starting: 0.8 ± 0.02 ms
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ProxSuite

• Fast: C++ with custom linear Cholesky solver
• Backends: dense, sparse, matrix-free optim.
• Easy-to-use: standard API, Python/Julia
• Open-source: BSD-license, Conda/PyPI

Setup: conda install -c conda-forge proxsuite / pip install proxsuite
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∇ THROUGH INFEASIBLE PROBLEMS



Idea

Use convex QP as a deep learning layer: 8

Input Output

QPLayer

Trained: 

QP

Figure 5: Learning to play Sudoku: the layer is trainable if and only if we can ∇ through infeasible LPs.

8

8Brandon Amos and J Zico Kolter. “Optnet: Differentiable optimization as a layer in neural networks”. In: International
Conference on Machine Learning. PMLR. 2017, pp. 136–145.
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Example of differentiable pipeline
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Robotics example

Figure 6: Differentiable pipeline training a QP-based motion policy with visual inputs.9

9

9Avadesh Meduri, Huaijiang Zhu, Armand Jordana, and Ludovic Righetti. “MPC with Sensor-Based Online Cost Adaptation”. In:
2023 IEEE International Conference on Robotics and Automation (ICRA). IEEE. 2023, pp. 996–1002.
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QPLayer methodology

10

10Antoine Bambade, Fabian Schramm, Adrien Taylor, and Justin Carpentier. “QPLayer: efficient differentiation of convex
quadratic optimization”. working paper or preprint. June 2023. URL: https://inria.hal.science/hal-04133055.
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ProxSuite

• Fast: C++ with custom linear Cholesky solver
• Backends: dense, sparse, matrix-free optim.
• Easy-to-use: standard API, Python/Julia
• Open-source: BSD-license, Conda/PyPI
• QPLayer: included, freshly baked!

Setup: conda install -c conda-forge proxsuite / pip install proxsuite
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CONCLUSION



Conclusion

• QP in control pipelines: model predictive control, inverse dynamics, ...
• QP benchmark: evaluate runtimes and accuracy, open to new problems
• ProxQP: handle infeasibility, real-time control
• QPLayer: ∇ through QP layers, everywhere
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That’s all folks!
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