# INDUCTIVE BIASES IN ROBOT LEARNING FOR CONTACT DETECTION AND OBSTACLE AVOIDANCE

# Stéphane Caron

Works with Ü. Bora Gökbakan and Valentin Tordjman--Levavasseur November 4, 2025

,

Département informatique de l'École normale supérieure (CNRS, ENS-PSL, INRIA)

# **BEFORE WE START**

# WAFR 2026 IN OULU, FINLAND

# Topics:

- Design and analysis of robotic algorithms
- Mathematical foundations of robotics
- Cross-disciplinarity most welcome!

# Timeline:

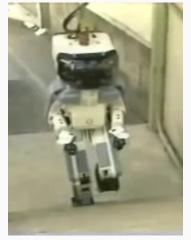
- · Paper submission: January 15, 2026
- · Notification of acceptance: March 15, 2026
- · Conference: June 15-17, 2026

**Publication:** Springer Proceedings in Advanced Robotics (SPAR) series. Selected papers invited for publication in special issues.





## MACHINE LEARNING HAS COME TO ROBOTICS







**Figure 2:** 2019



**Figure 3:** 2025

#### MODEL-BASED AND MODEL-FREE POLICIES

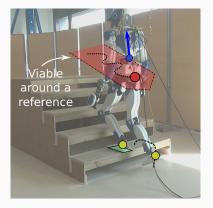


Figure 4: Model-based,  $\sim 50$  planning and control parameters. Tuned by hand.

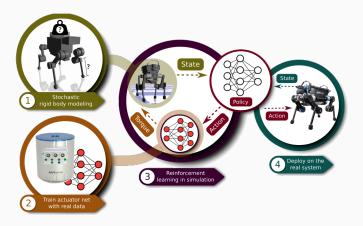


Figure 5: Model-free,  $\sim 500$  parameters. Tuned by reinforcement learning.

<sup>&</sup>lt;sup>1</sup>Joonho Lee, Jemin Hwangbo, and Marco Hutter. **"Robust recovery controller for a quadrupedal robot using deep reinforcement learning"**. In: *arXiv preprint arXiv*:1901.07517 (2019).

# MODEL-"FREE"?

Simulation and actuator nets are models:



<sup>&</sup>lt;sup>2</sup>Jemin Hwangbo et al. "Learning agile and dynamic motor skills for legged robots". In: *Science Robotics* 4.26 (2019).

#### **INDUCTIVE BIASES**

Model-based vs model-free is not the most meaningful distinction.

How about inductive biases?

## Definition

An inductive bias is an assumption the learner uses to generalize to OOD inputs.

# Machine learning examples:

- · 2D convolutional layers: process local patterns, assume spatial hierarchy
- Maximum margin in support vector machines

# Robotics examples:

- · Rigid bodies: prioritize explanations where solid objects don't deform
- · Gauss's principle of least action: prioritize proximity to free motions

5

#### A SPECTRUM OF INDUCTIVE BIASES

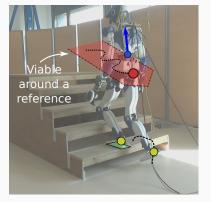


Figure 6: More IB.



Figure 7: Hic sunt dracones.



Figure 8: Fewer IB.

#### THIS PRESENTATION

In the following two works, we apply machine learning with inductive biases to two robotics problems:

- · Contact detection [GDC25]: is a leg in contact with the ground?
- · Collision avoidance: don't bump into obstacles.

# CONTACT ESTIMATION

#### CONTACT DETECTION

**Problem:** Detect when the robot makes and breaks contact with the ground.

## This work:

- · No contact sensor
- · Leveraging data (model-free).



(a) Solo-12 [Gri+20]

**(b)** Upkie [Car+25]

**Figure 9:** Open-source robots not equipped with contact sensors.

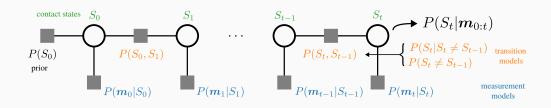
#### **EXISTING METHODS**

Prior works relied on gait priors, kinodynamic models or collocated sensors:

| Method              | IMU | Proprio. | F/T sensors <sup>3</sup> | Data-driven | Morphology    |
|---------------------|-----|----------|--------------------------|-------------|---------------|
| [Hwa+16; Jen+19]    | +   | +        | _                        | _           | Quadruped     |
| [RSR18]             | +   | +        | +                        | _           | Biped         |
| [You+24]            | +   | +        | _                        | +           | Quadruped     |
| [GDC25] (This work) | +   | +        | _                        | +           | Wheeled-biped |

<sup>&</sup>lt;sup>3</sup>Dedicated force-torque sensors collocated with contacts.

Contact estimation can be cast as a probabilistic state machine:

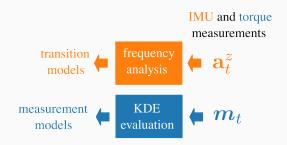


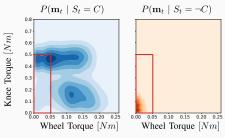
<sup>&</sup>lt;sup>4</sup>Jemin Hwangbo et al. **"Probabilistic foot contact estimation by fusing information from dynamics and differential/forward kinematics".** In: *IEEE/RSJ International Conference on Intelligent Robots and Systems.* IEEE, Oct. 2016.

# BAYESIAN FILTERING (CONT'D)

In order to estimate the contact state, we decompose the problem into two parts:

- Transition probabilities: based on IMU readings.
- · Measurement likelihoods: based on joint torques.





 $P(S_t = C \mid \mathbf{m}_t)$ 

(a) Likelihoods for contact (left) and no contact (right).

(b) Normalized KDEs.

We use **Gaussian Kernel Density Estimation** (KDE) to estimate measurement likelihoods (10a), and for reference a "measurement-only" contact probability (10b).

KDEs are trained from 7 min of real-robot data.

#### SPECTROGRAM DURING CONTACT TRANSITIONS

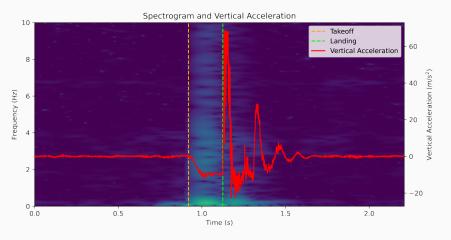
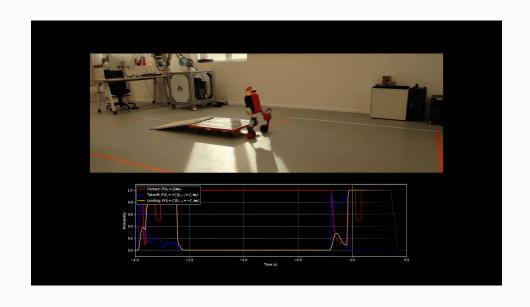


Figure 11: Vertical acceleration  $\mathbf{a}_t^z$  (red) and power spectral density around takeoff (orange) and landing (green) events on a real robot.

# **REAL-WORLD EXPERIMENTS**



#### **REAL-WORLD EXPERIMENTS**

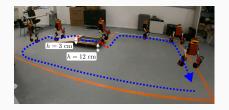


Figure 12: During evaluation, the robot was driven 5 times around a track, where it climbed a 15 cm high ramp, followed by two 3 cm and 12 cm drops (video).

| Method       | Takeoff   |        | Landing   |        |
|--------------|-----------|--------|-----------|--------|
|              | Precision | Recall | Precision | Recall |
| Bayes filter | 0.91      | 1.0    | 0.71      | 1.0    |
| Meas. only   | 0.59      | 1.0    | 0.55      | 1.0    |
| NMN [You+24] | 0.53      | 0.90   | 0.56      | 0.90   |

**Table 1:** Detection of transition events over 10 drops during a session of 4 minutes.

| Method       | Takeoff          | Landing                           |  |
|--------------|------------------|-----------------------------------|--|
| Bayes filter | $77.1 \pm 31.8$  | $17.9 \pm 9.1$                    |  |
| Meas. only   | $83.1 \pm 31.9$  | $\textbf{10.1} \pm \textbf{7.37}$ |  |
| NMN [You+24] | $125.0 \pm 59.6$ | $22.4\pm7.4$                      |  |

**Table 2:** Transition latencies (ms). Only correctly identified transitions were considered.

#### CONCLUSION: CONTACT DETECTION

- Data-driven contact estimation from IMU and proprioception.
- Sample-efficiency: trained with only a few minutes of real-robot data.
- Better recall and precision than the neural network baseline.
- Open source code and data.<sup>5</sup>

<sup>5</sup>https://github.com/ubgk/contact\_agent

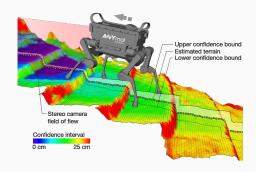


#### MOTIVATION: PERCEPTIVE LOCOMOTION

One approach to perceptive locomotion:

- · Mapping: build an elevation map.
- Localization: estimate where the robot is in that map.
- Control: step over flat surfaces, avoid obstacles.

Plus, elevation maps are interpretable.



<sup>&</sup>lt;sup>6</sup>Peter Fankhauser, Michael Bloesch, and Marco Hutter. "Probabilistic Terrain Mapping for Mobile Robots With Uncertain Localization". In: *IEEE Robotics and Automation Letters* 3.4 (Oct. 2018).

#### CAVEATS OF ELEVATION MAPPING

# Solving too hard a problem?

- Time complexity of mapping and localization in an elevation map.
- Representation is not suited to unstructured environments.

We consider an alternative with less computations from sensors to locomotion.





<sup>&</sup>lt;sup>7</sup>Takahiro Miki et al. "Learning robust perceptive locomotion for quadrupedal robots in the wild". In: *Science Robotics* 7.62 (Jan. 2022).

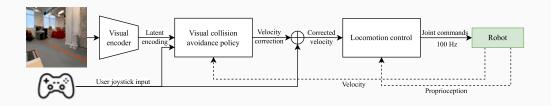
#### **OVERVIEW**

# Approach

Replace elevation map by a trained latent space.

#### SYSTEM STRUCTURE

- · Visual encoder: trained on monocular depth prediction
- · Collision avoidance: trained by reinforcement learning
- · Locomotion: velocity tracking and balancing by model predictive control



#### AUGMENTING SIMULATION WITH NOVEL VIEW SYNTHESIS

Generate RGB and depth first-person views in simulation.

- · Capture a video of a room and extract about 500 images
- COLMAP [SF16] to extract the image extrinsics and camera intrinsics
- · Align and scale the reference frame of the images
- · Train a 2D Gaussian splatting model
- Query images at simulated camera poses

<sup>&</sup>lt;sup>8</sup>Binbin Huang et al. **"2D Gaussian Splatting for Geometrically Accurate Radiance Fields".** In: Special Interest Group on Computer Graphics and Interactive Techniques Conference Conference Papers '24. SIGGRAPH '24. ACM, July 2024.

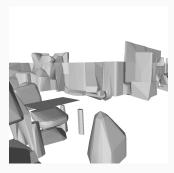
#### COLLISIONS WITH THE ENVIRONMENT

Gaussian splatting also allows rendering of depth images:

- TSDF fusion to get a mesh of the rendered room.
- Decompose nonconvex mesh into to convex subparts using COACD [Wei+22].
- · Collision detection using the Coal<sup>9</sup> library.



(a) Nonconvex raw mesh



(b) Convex collision meshes

<sup>9</sup>https://github.com/coal-library/coal

#### TRAINING VISION

Train the vision encoder separately on monocular depth prediction:

- · Collect RGB-log(Depth) pairs using Gaussian splatting.
- Encoder-decoder convolutional architecture with a latent of dimension 32.
- PSNR at 0.5m on test set: 16.8.

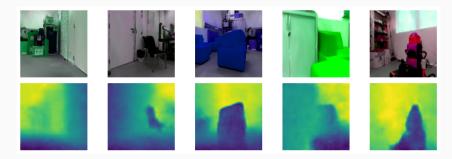


Figure 14: Samples of generated RGB images and predicted depth reconstructions

#### **NAVIGATION ENVIRONMENT**

Train a policy by reinforcement learning in a navigation environment:

- · Observation: position, velocity, user input, previous action, latent encoding.
- Action: velocity correction in  $\mathfrak{se}(2)$ .
- Reward: survival bonus + correction penalty + distance penalty.

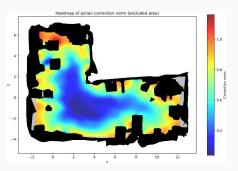


Figure 15: Norm of velocity corrections applied by the agent in the training room.

• Input velocities and collision-avoidance compensation combined:

$$\zeta_t^* = (v_t^*, 0, \omega_t^*) = j_t + u_t$$

- · Angular velocity  $\omega_t^*$  mapped to wheel velocities via differential-drive model
- $\cdot$  Sagittal velocity  $v_t^*$  tracked by MPC over wheeled-inverted-pendulum model
- · Linearized optimal-control problem formulated as a quadratic program (QP)
- Solved in real-time using PROXQP<sup>10</sup> with hot-starting

<sup>&</sup>lt;sup>10</sup>Antoine Bambade et al. "ProxQP: an Efficient and Versatile Quadratic Programming Solver for Real-Time Robotics Applications and Beyond". In: IEEE Transactions on Robotics (2025).

## QUANTITATIVE RESULTS

Experiment over eight scenarios with comparison to FOA [HSB22]:

- Higher success rate on average.
- · Completes the obstacle course faster.
- · Lower correction of user inputs.

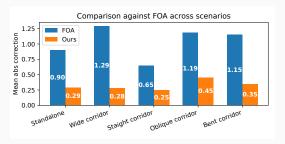


Figure 16: Comparison of corrections applied over the experimental setups.

# **REAL-ROBOT EXPERIMENTS**



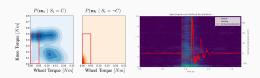
CONCLUSION

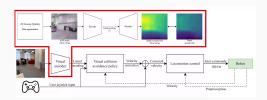
## Contact detection:

- · Algorithm: Kernel density estimation
- · Data: Real-robot
- · Inductive bias: Bayes-like filter

## Collision avoidance:

- · Algorithm: Policy gradient
- · Data: Novel view synthesis
- · Inductive bias: Depth estimation





# THANK YOU FOR YOUR ATTENTION



**BIBLIOGRAPHY** 

#### REFERENCES I

- [Bam+25] Antoine Bambade et al. "ProxQP: an Efficient and Versatile Quadratic Programming Solver for Real-Time Robotics Applications and Beyond". In: IEEE Transactions on Robotics (2025).
- [Car+25] Stéphane Caron et al. *Upkie open source wheeled biped robot*. Version 9.0.1. 2025. URL: https://github.com/upkie/upkie.
- [FBH18] Peter Fankhauser, Michael Bloesch, and Marco Hutter. "Probabilistic Terrain Mapping for Mobile Robots With Uncertain Localization". In: IEEE Robotics and Automation Letters 3.4 (Oct. 2018).
- [GDC25] Ü. Bora Gökbakan, Frederike Dümbgen, and Stéphane Caron. "A Data-Driven Contact Estimation Method for Wheeled-Biped Robots". In: IEEE International Conference on Robotics and Automation. 2025.

#### REFERENCES II

- [Gri+20] Felix Grimminger et al. "An Open Torque-Controlled Modular Robot Architecture for Legged Locomotion Research". In: IEEE Robotics and Automation Letters 5.2 (2020).
- [HSB22] Lukas Huber, Jean-Jacques Slotine, and Aude Billard. "Fast Obstacle Avoidance Based on Real-Time Sensing". In: arXiv preprint arXiv:2205.04928 (2022).
- [Hua+24] Binbin Huang et al. "2D Gaussian Splatting for Geometrically Accurate Radiance Fields". In: Special Interest Group on Computer Graphics and Interactive Techniques Conference Conference Papers '24. SIGGRAPH '24. ACM, July 2024.
- [HWa+16] Jemin Hwangbo et al. "Probabilistic foot contact estimation by fusing information from dynamics and differential/forward kinematics". In: IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE, Oct. 2016.
- [Hwa+19] Jemin Hwangbo et al. "Learning agile and dynamic motor skills for legged robots". In: Science Robotics 4.26 (2019).

#### REFERENCES III

- [Jen+19] Fabian Jenelten et al. "Dynamic Locomotion on Slippery Ground". In: IEEE Robotics and Automation Letters 4.4 (Oct. 2019). ISSN: 2377-3766, 2377-3774. (Visited on 06/13/2023).
- [LHH19] Joonho Lee, Jemin Hwangbo, and Marco Hutter. "Robust recovery controller for a quadrupedal robot using deep reinforcement learning". In: arXiv preprint arXiv:1901.07517 (2019).
- [Mik+22] Takahiro Miki et al. "Learning robust perceptive locomotion for quadrupedal robots in the wild". In: Science Robotics 7.62 (Jan. 2022).
- [RSR18] Nicholas Rotella, Stefan Schaal, and Ludovic Righetti. "Unsupervised Contact

  Learning for Humanoid Estimation and Control". In: IEEE International Conference on

  Robotics and Automation. 2018.

#### REFERENCES IV

- [SF16] Johannes Lutz Schönberger and Jan-Michael Frahm. "Structure-from-Motion Revisited". In: Conference on Computer Vision and Pattern Recognition. 2016.
   [Wei+22] Xinyue Wei et al. "Approximate convex decomposition for 3d meshes with collision-aware concavity and tree search". In: ACM Transactions on Graphics (TOG) 41.4 (2022).
- [You+24] Donghoon Youm et al. "Legged Robot State Estimation With Invariant Extended Kalman Filter Using Neural Measurement Network". arXiv preprint arXiv:2402.00366. 2024.