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BEFORE WE START



WAFR 2026 IN OULU, FINLAND

Topics:
• Design and analysis of robotic algorithms
• Mathematical foundations of robotics
• Cross-disciplinarity most welcome!

Timeline:
• Paper submission: January 15, 2026
• Notification of acceptance: March 15, 2026
• Conference: June 15-17, 2026

Publication: Springer Proceedings in Advanced
Robotics (SPAR) series. Selected papers invited
for publication in special issues.
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INDUCTIVE BIASES



MACHINE LEARNING HAS COME TO ROBOTICS

Figure 1: 1998 Figure 2: 2019 Figure 3: 2025
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MODEL-BASED AND MODEL-FREE POLICIES

Viable
around a
reference

Figure 4: Model-based, ∼ 50 planning and
control parameters. Tuned by hand.

Viable from
almost

any state

Figure 5: Model-free, ∼ 500 parameters.
Tuned by reinforcement learning.

1

1Joonho Lee, Jemin Hwangbo, and Marco Hutter. “Robust recovery controller for a quadrupedal
robot using deep reinforcement learning”. In: arXiv preprint arXiv:1901.07517 (2019).
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MODEL-“FREE”?

Simulation and actuator nets are models:

2

2Jemin Hwangbo et al. “Learning agile and dynamic motor skills for legged robots”. In: Science
Robotics 4.26 (2019).
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INDUCTIVE BIASES

Model-based vs model-free is not the most meaningful distinction.

How about inductive biases?
Definition
An inductive bias is an assumption the learner uses to generalize to OOD inputs.

Machine learning examples:

• 2D convolutional layers: process local patterns, assume spatial hierarchy
• Maximum margin in support vector machines

Robotics examples:

• Rigid bodies: prioritize explanations where solid objects don’t deform
• Gauss’s principle of least action: prioritize proximity to free motions
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A SPECTRUM OF INDUCTIVE BIASES

Viable
around a
reference

Figure 6: More IB. Figure 7: Hic sunt dracones.

Viable from
almost

any state

Figure 8: Fewer IB.
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THIS PRESENTATION

In the following two works, we apply machine learning with inductive biases to
two robotics problems:

• Contact detection [GDC25]: is a leg in contact with the ground?
• Collision avoidance: don’t bump into obstacles.
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CONTACT ESTIMATION



CONTACT DETECTION

Problem: Detect when the robot makes
and breaks contact with the ground.

This work:
• No contact sensor
• Leveraging data (model-free).

(a) Solo-12 [Gri+20] (b) Upkie [Car+25]

Figure 9: Open-source robots not
equipped with contact sensors.
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EXISTING METHODS

Prior works relied on gait priors, kinodynamic models or collocated sensors:

Method IMU Proprio. F/T sensors3 Data-driven Morphology

[Hwa+16; Jen+19] + + − − Quadruped
[RSR18] + + + − Biped
[You+24] + + − + Quadruped

[GDC25] (This work) + + − + Wheeled-biped

3Dedicated force-torque sensors collocated with contacts.
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BAYESIAN FILTERING

Contact estimation can be cast as a probabilistic state machine:

frequency 
 analysis

   KDE 
evaluation

contact states
IMU and torque
 measurements

prior

transition
  models

measurement
     models

4

4Jemin Hwangbo et al. “Probabilistic foot contact estimation by fusing information from
dynamics and differential/forward kinematics”. In: IEEE/RSJ International Conference on
Intelligent Robots and Systems. IEEE, Oct. 2016.
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BAYESIAN FILTERING (CONT’D)

In order to estimate the contact state, we decompose the problem into two parts:

• Transition probabilities: based on IMU readings.
• Measurement likelihoods: based on joint torques.
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MEASUREMENT MODEL
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(a) Likelihoods for contact (left) and no contact (right).
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(b) Normalized KDEs.

We use Gaussian Kernel Density Estimation (KDE) to estimate measurement
likelihoods (10a), and for reference a “measurement-only” contact probability
(10b).

KDEs are trained from 7 min of real-robot data.
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SPECTROGRAM DURING CONTACT TRANSITIONS

Figure 11: Vertical acceleration azt (red) and power spectral density around takeoff
(orange) and landing (green) events on a real robot.
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REAL-WORLD EXPERIMENTS
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REAL-WORLD EXPERIMENTS
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Figure 12: During evaluation, the
robot was driven 5 times around a
track, where it climbed a 15 cm high
ramp, followed by two 3 cm and
12 cm drops (video).

Method Takeoff Landing

Precision Recall Precision Recall
Bayes filter 0.91 1.0 0.71 1.0
Meas. only 0.59 1.0 0.55 1.0

NMN [You+24] 0.53 0.90 0.56 0.90

Table 1: Detection of transition events over 10
drops during a session of 4 minutes.

Method Takeoff Landing

Bayes filter 77.1 ± 31.8 17.9 ± 9.1
Meas. only 83.1 ± 31.9 10.1 ± 7.37

NMN [You+24] 125.0 ± 59.6 22.4 ± 7.4

Table 2: Transition latencies (ms). Only correctly
identified transitions were considered.
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https://www.youtube.com/watch?v=QemngyjAQVU&themeRefresh=1


CONCLUSION: CONTACT DETECTION

• Data-driven contact estimation from IMU and proprioception.
• Sample-efficiency: trained with only a few minutes of real-robot data.
• Better recall and precision than the neural network baseline.
• Open source code and data.5

5https://github.com/ubgk/contact_agent
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COLLISION AVOIDANCE



MOTIVATION: PERCEPTIVE LOCOMOTION

One approach to perceptive locomotion:
• Mapping: build an elevation map.
• Localization: estimate where the
robot is in that map.

• Control: step over flat surfaces, avoid
obstacles.

Plus, elevation maps are interpretable.

6

6Peter Fankhauser, Michael Bloesch, and Marco Hutter. “Probabilistic Terrain Mapping for Mobile
Robots With Uncertain Localization”. In: IEEE Robotics and Automation Letters 3.4 (Oct. 2018).
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CAVEATS OF ELEVATION MAPPING

Solving too hard a problem?
• Time complexity of mapping and
localization in an elevation map.

• Representation is not suited to
unstructured environments.

We consider an alternative with less
computations from sensors to locomotion.

7

7Takahiro Miki et al. “Learning robust perceptive locomotion for quadrupedal robots in the wild”.
In: Science Robotics 7.62 (Jan. 2022).
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OVERVIEW

Approach
Replace elevation map by a trained latent space.
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SYSTEM STRUCTURE

• Visual encoder: trained on monocular depth prediction
• Collision avoidance: trained by reinforcement learning
• Locomotion: velocity tracking and balancing by model predictive control
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AUGMENTING SIMULATION WITH NOVEL VIEW SYNTHESIS

Generate RGB and depth first-person views in simulation.

• Capture a video of a room and extract about 500 images
• COLMAP [SF16] to extract the image extrinsics and camera intrinsics
• Align and scale the reference frame of the images
• Train a 2D Gaussian splatting model
• Query images at simulated camera poses

8

8Binbin Huang et al. “2D Gaussian Splatting for Geometrically Accurate Radiance Fields”. In:
Special Interest Group on Computer Graphics and Interactive Techniques Conference Conference
Papers ’24. SIGGRAPH ’24. ACM, July 2024.
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COLLISIONS WITH THE ENVIRONMENT

Gaussian splatting also allows rendering of depth images:

• TSDF fusion to get a mesh of the rendered room.
• Decompose nonconvex mesh into to convex subparts using COACD [Wei+22].
• Collision detection using the Coal9 library.

(a) Nonconvex raw mesh (b) Convex collision meshes

9https://github.com/coal-library/coal
22

https://github.com/coal-library/coal


TRAINING VISION

Train the vision encoder separately on monocular depth prediction:

• Collect RGB–log(Depth) pairs using Gaussian splatting.
• Encoder-decoder convolutional architecture with a latent of dimension 32.
• PSNR at 0.5m on test set: 16.8.

Figure 14: Samples of generated RGB images and predicted depth reconstructions
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NAVIGATION ENVIRONMENT

Train a policy by reinforcement learning in a navigation environment:

• Observation: position, velocity, user input, previous action, latent encoding.
• Action: velocity correction in se(2).
• Reward: survival bonus + correction penalty + distance penalty.

Figure 15: Norm of velocity corrections applied by the agent in the training room.
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LOW-LEVEL LOCOMOTION

• Input velocities and collision-avoidance compensation combined:

ζ∗t = (v∗t , 0, ω
∗
t ) = jt + ut

• Angular velocity ω∗
t mapped to wheel velocities via differential-drive model

• Sagittal velocity v∗t tracked by MPC over wheeled-inverted-pendulum model
• Linearized optimal-control problem formulated as a quadratic program (QP)
• Solved in real-time using PROXQP10 with hot-starting

10Antoine Bambade et al. “ProxQP: an Efficient and Versatile Quadratic Programming Solver for
Real-Time Robotics Applications and Beyond”. In: IEEE Transactions on Robotics (2025).
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QUANTITATIVE RESULTS

Experiment over eight scenarios with comparison to FOA [HSB22]:

• Higher success rate on average.
• Completes the obstacle course faster.
• Lower correction of user inputs.
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Figure 16: Comparison of corrections applied over the experimental setups.
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REAL-ROBOT EXPERIMENTS
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CONCLUSION



CONCLUSION

Contact detection:
• Algorithm: Kernel density estimation
• Data: Real-robot
• Inductive bias: Bayes-like filter

Collision avoidance:
• Algorithm: Policy gradient
• Data: Novel view synthesis
• Inductive bias: Depth estimation
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THANK YOU FOR YOUR ATTENTION
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