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Abstract

In this thesis, we explore the questions of motion planning and control for hu-

manoid robots with the aim to integrate motion planning in a fast control loop.

Our contributions towards this goal revolve around three axes: kinodynamic de-

coupling, force-space curtailment, and dimensional reduction of the control space.

In the first one, we decouple the kinematic and dynamic components of the plan-

ning problem by an original integration with time-optimal control methods. This

approach allows us to keep planning in a geometric space, the benefits of which we

demonstrate both empirically and through theoretical proofs. In the second axis,

we focus on the contact aspects of planning. To avoid slippage or other contact

losses, planners usually consider a large number of contact forces and their asso-

ciated Coulomb friction cones. We show how this redundant representation can be

reduced to contact wrenches, unique to each contacting articulation, and propose

the first analytical derivation of the associated frictional wrench cone for rectan-

gular contact surfaces. We then connect these developments to the gravito-inertial

wrench for whole-body motion planning. However, we note that using wrenches

for planning leads to challenging open questions such as the interpolation of the

non-holonomic angular momentum. We attack this problem with a paradigm shift:

rather than controlling wrenches, we generalize the notion of ZMP (point where

the tangential component of the gravito-inertial moment vanishes) to that of “ZMP

of a wrench”. We then propose efficient algorithms to compute the associated sup-

port areas, and show how to use these tools to generate locomoting trajectories

from simplified dynamics model such as the Linear Pendulum, even in arbitrary

multi-contact scenarios. This reduction of the control space rounds the third and

last axis of the computational foundations advanced by this thesis. We demonstrate

the applicability of each by simulations and empirical experiments on the HRP-4

humanoid robot.
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Résumé

Cette thèse explore les questions de la planification et du contrôle du mouve-

ment pour les robots humanöıdes, en se donnant pour objectif de jeter les bases

calculatoires qui permettront d’inclure cette première dans une boucle de con-

trôle haute-fréquence. Ces bases se répartissent en trois axes : découplage kino-

dynamique, réduction de l’espace des forces, et réduction de l’espace de contrôle.

Dans le premier, nous séparons les composantes géométrique et dynamique du

problème de planification par des méthodes issues de la paramétrisation en temps

optimal. Cette approche permet de maintenir un espace de planification purement

géométrique, dont nous démontrons l’intérêt à la fois empiriquement et par des

preuves théoriques. Nous nous concentrons ensuite sur l’aspect continger1 de la

planification humanöıde. La nécessité d’éviter les pertes de contact oblige générale-

ment les planificateurs à considérer un grand nombre de forces de contact asso-

ciées à des cônes de frottements de Coulomb. Nous montrons comment réduire

cette représentation redondante à des torseurs de contact, uniques pour chaque ar-

ticulation, et proposons la première dérivation analytique du cônes de frottement

torsoriel pour les surfaces de contact rectangulaires. Nous connectons ensuite ce

développement au cône du torseur gravito-inertiel pour la planification corps com-

plet. Nous remarquons toutefois que l’utilisation de torseurs pour cette tâche pose

des questions difficiles telles que l’interpolation du moment angulaire, qui est une

grandeur non-holonome. Nous y répondons par un changement de paradigme :

plutôt que d’utiliser ces torseurs directement, nous introduisons une généralisation

de la notion du ZMP (point d’annulation de la composante tangentielle du moment

gravito-inertial) à des torseurs généraux. Nous proposons ensuite des méthodes ef-

ficaces pour calculer la zone de support du ZMP généralisé, et montrons comment

celles-ci peuvent être utilisées générer des trajectoires locomotrices à partir de mod-

èles dynamiques simplifiés tels que le pendule linéaire. Cette réduction de l’espace

de contrôle à l’aide de modèle simplifiés constitue le troisième et dernier axe des

bases calculatoires avancées par cette thèse. Nous démontrons l’applicabilité de

l’ensemble de ces propositions par des simulations et expériences sur le robot hu-

manöıde HRP-4.

1 Relatif au contact ; du latin contingo (saisir, toucher).
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1
Introduction

1.1 Motivation

Robots are the synthesis of mechanisms and computers, made possible by actuators

and sensors. They implement a perception, planning and action loop:

Robot state

Environmt state

Plan of actions
Perception Planning Action

Internally, a robot maintains a model of itself, the environment, and the interac-

tions between them. Perception is the passive update of model states from sensor

readings. Action is the active output of actuator commands, which will affect the

robot’s state and the environment through the interactions between them. Finally,

planning is the computation of actions that bring the system to a desired state. It

implies by essence prediction, i.e., the anticipation of actions’ consequences: how

will the robot or the environment react to the application of a given command?

Providing a complete and accurate answer is a vastly complex task, fortunately the

prediction capabilities of a system need not be perfect thanks to the feedback loop:

after executing the first actions of a plan, the robot can perceive its new state, eval-

uate the difference with its prediction, and update its plan consequently.

For humanoid robots, interactions with the environment require a fast feedback

loop, with frequencies typically on the scale of the kilohertz. Yet, in the current state

of the technology, perception and motion planning are computationally intensive

and do not typically run at this such frequencies. This fact has led roboticists to

develop systems with open-loop planning and closed-loop control laws:

13



Environmt model Reference traj.
Vision

Trajectory
Generation

Trajectory
Tracking

Fast control loopSlow control loop

Teleoperated systems, such as those demonstrated recently at the DARPA Robotics

Challenge, are instances of this approach. Perception and motion planning are

executed at slow rates involving a human in the loop (for example, to specify goals

from 3D visualization data). A reference command is then sent to the robot, which

tracks the reference at best via a fast control loop. Teams using this paradigm could

successfully complete the challenge. Yet, for future research, one can note that the

constructed systems are not autonomous, i.e., they cannot cope with unexpected

situations without intervention from a human operator.

In this thesis, we focus on developing the planning capabilities of humanoid robots.

As a guiding principle, we argue that, for humanoids to gain more autonomy, mo-

tion planning should fit into the fast feedback loop:1

Environmt model Current traj.
Vision

Trajectory
Generation

Trajectory
Tracking

Fast control loopSlow control loop

The challenge in this endeavor is that the constraint space of a humanoid robot has

a complex structure, both kinematic (collision avoidance, joint limits, etc.) and dy-

namic (friction, torque limits, etc.), while fast motion planning can only be achieved

in spaces with simple structures. A great deal of our study will therefore focus on

the reduction of humanoid constraints to smaller spaces.

1.2 Related works and contributions

Motion planning and whole-body control have been fields of extensive research in

the robotics literature. This thesis makes a contribution in each, before advancing

a paradigm in which they can be combined.

1 Ideally, perception would also take part in this loop, however this part is not within the scope of
the present thesis.
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Motion planning is the problem of generating a long-term command driving the

system from its initial to a goal state. At first, this problem was considered from

the perspective of geometric constraints, such as obstacle avoidance, or those im-

posed by the kinematic structures of manipulators (Lozano-Perez, 1983). The two

emblematic planners of this epoch are Probabilistic Roadmap (PRM) (Kavraki et

al., 1996) and glsRRT (LaValle and Kuffner, 2000), both of which have been suc-

cessfully demonstrated empirically and theoretically through proofs of probabilistic

completeness (Hsu et al., 1997; LaValle and Kuffner, 2001). More recently, kinody-

namic constraints (Donald et al., 1993), which stem from differential equations of

dynamic systems, have also been taken into account (LaValle and Kuffner, 2001;

Hsu et al., 2002). These constraints are crucial for humanoid robots. However, the

performance of PRM or RRT, which is well established for geometric systems, has

been questioned and is still an open question for kinodynamic systems at large (see

Chapter 2). The first contribution of this thesis is to provide a precise proof of

probabilistic completeness for a class of kinodynamic planners that applies to

humanoids, which we will subsequently use in the rest of our work.

Kuffner et al. (2001) were among the first ones to apply RRT to humanoid motion

planning. To keep motion planning as a geometric problem, they only considered

the regime of “quasi-static” movements, i.e., motions of extremely slow velocities.

This choice seriously restricts the range of motions that the system can realize.

To overcome this limitation, we developed a new family of of planners based on

Time-Optimal Path Parameterization (TOPP) (see Chapter 2) that can explore both

the static and dynamic range of motion of dynamical systems. Applying these new

techniques to humanoids naturally led us to the question of balance, or contact

stability. The difficulty here is that humanoids do not directly control the contact

forces applied on them by the environment. Rather, they actuate their joint motors,

which generates in response a combination of contact forces, contact motions or

centroidal motions, according to the laws of physics (Wieber, 2006). The motion

planner needs to ensure a priori that the motion it sends to the whole-body con-

troller is feasible, i.e., that it can be achieved by the controller, given an anticipation

of the set of contact forces and centroidal motions that can be exerted by the envi-

ronment on the robot. This condition is summarized at the whole-body level by the

Gravito-Inertial Wrench Cone (GIWC) (Saida et al., 2003; Hirukawa et al., 2006;

Qiu et al., 2011). This thesis advances the algorithmic aspects of wrench-based

contact stability at two levels:

1.2 Related works and contributions 15



• at the local level, we provide an analytical formula for the wrench cone of a

contacting link. With this development, it becomes unnecessary to consider

sets of a contact points for contact stability, which has both theoretical and

computational benefits (see Chapter 4).

• at the whole-body level, we show how to integrate the GIWC condition within

TOPP to create a dynamic motion generator, which we demonstrate on chal-

lenging motions (see Chapter 5).

Wrench-based conditions are suitable for testing e.g., postural stability (Bretl and

Lall, 2008; Escande et al., 2013), but they pose conceptual challenges in planning:

how to interpolate trajectories in the 6D wrench space? How to select contacts to

maximize the volume of a wrench cone? Interestingly, these questions have been

readily answered in the simplified setting where the humanoid walks on horizontal

floors. In this case, a well-known (though incomplete) dynamic stability condition

is that the Zero-tilting Moment Point (ZMP) (Vukobratović and Stepanenko, 1972)

lies within the convex hull of ground contact points, the so-called support area. Yet,

the ZMP has been historically defined as a point on a unique ground surface, which

prevented its application to more general environments. The third contribution of

this thesis is to generalize the notions of ZMP and support areas to arbitrary

contact conditions. Based on this advance, we demonstrate in Chapter 6 a whole-

body controller with which a humanoid can walk in challenging environments using

a simple linear pendulum rooted at the generalized ZMP.

1.3 Computational foundation

Bringing motion planning into the fast feedback loop is the thread behind the ap-

parent variety of contributions of this thesis. Figure 1.1 shows how they combine

together into a framework, which is what we designate by computational founda-

tion for planner-in-the-loop control of humanoids. It consists in three components,

working on increasingly high-dimensional variables:

Low-dimensional planning: for fast-rate outputs, high-level planning is done on

a low-dimensional model of the full robot dynamics, which we obtain by re-

duction of the force space (Chapters 4 and 5) and a proper generalization of
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the ZMP to multi-contact scenarios (Chapter 6). Contact planning (in gray) is

a complementary component for which we provide technical elements in Ap-

pendix A, however the main focus of this thesis is on the high-level planner.

Kinodynamically-decoupled path planning: low-dimensional references are treated

as objectives to be fulfilled by a whole-body path tracker. Thanks to the in-

tegration with Time-Optimal Path Parameterization (TOPP, Chapter 3), we

decouple kinematic and dynamic constraints, which limits dimensional ex-

pansion by solving consecutively two simpler problem: inverse kinematics

and time-optimal control. This part is demonstrated in Chapter 5.

Joint-level control: the tracker computes a whole-body reference joint-angle tra-

jectory, which is independently tracked at best by each joint controller.

At the end of this pipeline, up-to-date joint states are fed back to the motion planner

and a new update cycle begins.

1.4 Outline of the thesis

The rest of this thesis is organized as follows.

In Chapter 2, we review classical motion planning concepts and results before mak-

ing our contribution to the problem of kinodynamic planning: proving probabilistic

completeness for the class of planners that we will use within the rest of the thesis.

We also provide simulation experiments that corroborate our theoretical finding.

Next, we introduce in Chapter 3 a combination of kinodynamic planning with time-

optimal control that allows a new form of kinodynamic planning in the configuration

space, as opposed to the bigger state space (including velocities) that is commonly

used.

Narrowing down on humanoids, we review in Chapter 4 the physics of contact

and fundamental calculation techniques that allow us to derive a novel analytical

formula of the contact wrench cone of rectangular surfaces.

We then broaden our scope to multi-contact stability in Chapter 5 with the Gravito-

Inertial Wrench Cone, and provide an original time-optimal formulation of the path

17
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tracking dynamics under GIWC constraints. We demonstrate the complete frame-

work by retiming dynamic, non-quasi-static humanoid motions.

Finally, in Chapter 6, we generalize the concept of Zero-tilting Moment Point to

arbitrary contact wrenches. This development allows us to create a whole-body

controller based on a simple linear-pendulum model, yet general enough to apply

to locomotion over arbitrary terrains.
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2Kinodynamic Planning in the

State Space

„
凡事豫则立，不豫则废。

言前定则不跌，事前定则不困，

行前定则不疚，道前定则不穷。

— Variation on《礼记·中庸》

This chapter provides background knowledge on kinodynamic motion planning,

as well as the contribution of this thesis to the field: the proof of probabilistic

completeness for the class of planners that we will use later on.

2.1 Background

2.1.1 Motion planning problem

In what follows, a robot defines a system of articulated rigid bodies with n de-

grees of freedom. We will denote by C ⊂ Rn the configuration space of the robot,

where a configuration is an n-dimensional vector q of generalized coordinates. The

state space X ⊂ R2n denotes the differential manifold of positions and velocities1

x = (q, q̇), satisfying dq = q̇ dt where t denotes the time variable and q̇ is the

n-dimensional vector of joint-angle velocities. The equations of motion of the robot

can be described by a time-invariant differential equation in the state space:

ẋ(t) = f(x(t),u(t)), (2.1)

1 In all generality, state spaces may also include higher-order derivatives. However, all our systems
will be at most second-order ones from Newtonian mechanics, so that small variations (differen-
tials) within a first-order state space will suffice to describe them fully for our purpose.
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where u ∈ U denotes a vector of control inputs, e.g., joint torques τ for a humanoid

or robotic arm. We denote by Uadm ⊂ U denote the subset of admissible controls.

For example, Uadm = {τ ∈ Rn|∀i, τmin ≤ τ ≤ τmax} denotes a set of admissible

torques with lower and upper torque limits. All vector inequalities thereafter are to

be understood component-wise, i.e., τ ≤ τmax if and only if, for each coordinate i,

τi ≤ τmax,i.

Motion planning is the problem of finding a long-term sequence of controls u(t)

that drive the system from its initial to a goal configuration. All configurations

may not be reachable, depending on the constraints exerted on the robot and the

environment. Accounting for this fact, a desirable property for a motion planner

is to be complete, that is to say, to return a solution whenever one exists, and a

negative response otherwise (Latombe, 1991). However, this guarantee has been

shown to be PSPACE-hard (LaValle, 2006).

Randomized planners (Kavraki et al., 1996; LaValle and Kuffner, 2000) brought a

paradigm shift in the motion planning literature. They are grounded on the ob-

servation that common planning problems do not have the pathological features

of theoretical edge-cases. Rather, they can be efficiently explored by making use

of random samples and natural geometrical biases (like the Voronoi bias resulting

from uniform sampling, see e.g., (Yershova et al., 2005)). A randomized planner is

said to be probabilistically complete if the probability of returning a solution, when

there is one, tends to one as execution time goes to infinity (LaValle, 2006).

Theoretical as they may seem, the notions of completeness are of notable practical

interest, as proving completeness requires one to formalize the problem by hypothe-

ses on the robot, the environment, etc. While experiments can show that a planner

works for a given robot, in a given environment, for a given query, etc., a proof of

completeness is a certificate that the planner works for a precise set of problems.

The size of this set depends on how strong the assumptions required to make the

proof are: the weaker the assumptions, the larger the set of solvable problems.

Kinodynamic motion planning (Donald et al., 1993) refers to the motion planning

problem for systems under kinodynamic constraints. Such constraints are more

difficult to deal with than geometric constraints because they cannot in general be

expressed using only configuration-space variables – such as the joint angles of a
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manipulator, the position and the orientation of a mobile robot, etc. Rather, they

involve higher-order derivatives such as velocities and accelerations. There are two

types of kinodynamic constraints:

Non-holonomic constraints: non-integrable equality constraints on higher-order

derivatives, such as found in wheeled vehicles (Laumond, 1998), under-actuated

manipulators (Bullo and Lynch, 2001) or space robots. Systems under such

constraints have the property that their state depends not only on configura-

tion variables, but also on the path taken to reach it. When a non-holonomic

systems executes a loop trajectory in its configuration space, it may end in a

state different from the one it started from (Wieber, 2006).

Hard bounds: inequality constraints on higher-order derivatives such as torque

bounds for manipulators (Bobrow et al., 1985), support areas (Wieber, 2002)

or wrench cones for humanoid stability (Caron et al., 2015a), etc.

Some authors have considered systems that are subject to both types of constraints,

such as under-actuated manipulators with torque bounds (Bullo and Lynch, 2001).

Humanoid robots are non-holonomic systems due to the asymmetry (in joint-torque)

of the Newton-Euler equations of motion, which means that a motion that is feasi-

ble forward in time may require different torques, and thus be unfeasible backward

in time (see Chapter 4 or Wieber, 2006).

2.1.2 Structure of roadmap planners

By randomized planners, we essentially refer to the two emblematic instances of

PRM (Kavraki et al., 1996) or Rapidly-exploring Random Trees (RRT) (LaValle and

Kuffner, 2001). Interestingly, their structures are very similar, so that our theoret-

ical developments apply equally to one or the other. Both PRM and RRT build a

roadmap on the state space and rely on repeated random sampling of the free state

space, i.e., states with non-colliding configurations and velocities within the system

bounds. New states are connected to the roadmap using a steering function, which

is a method used to drive the system from an initial to a goal configuration. The

steering method may be imperfect, e.g., it may not reach the goal exactly, not take

environment collisions into account, only apply to states that are sufficiently close,
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Algorithm 1 Extension step of randomized planners (PRM or RRT)

Require: initial node xinit, number of iterations N
1: (V,E)← ({xinit}, ∅)
2: for N steps do
3: xrand ← SAMPLE(Xfree)
4: Xparents ← PARENTS(xrand, V )
5: for xparent in Xparents do
6: xsteer ← STEER(xparent, xrand)
7: if xsteer is a valid state then
8: V ← V ∪ {xsteer}
9: E ← E ∪ {(xparent,xsteer)}

10: end if
11: end for
12: end for
13: return (V,E)

etc. The objective of the motion planner is to overcome these limitations, turning a

local steering function into a global planning method.

PRM builds a roadmap that is later used to generate motions between many initial

and final states (many-to-many queries). When new samples are drawn, they are

connected to all neighboring states in the roadmap using the steering function,

resulting in a connected graph. Meanwhile, RRT focuses on driving the system from

one initial state xinit towards a goal area (one-to-one queries). It grows a tree by

connecting new samples to one neighboring state, usually their closest neighbor.

Both PRM’s and RRT’s extension step are represented by Algorithm 1, which relies

on the following sub-routines (see Fig. 2.1 for an illustration):

• SAMPLE(S): randomly sample an element from a set S;

• PARENTS(x, V ): return a set of states in the roadmap V from which steering

towards x will be attempted;

• STEER(x,x′): generate a system trajectory from x towards x′. If successful,

return a new node xsteer ready to be added to the roadmap. Depending on the

planner, the success criterion may be “reach x′ exactly” or “reach a vicinity of

x′”.

The design of each sub-routine greatly impacts the quality and even the complete-

ness of the resulting planner. In the literature, SAMPLE(S) is usually implemented

as uniform random sampling over S, but some authors have suggested adaptive
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x'=SAMPLE()

ROOT

P1

STEER(P , x')1

P2
STEER(P , x')2

P3

STEER(P , x')3

Fig. 2.1.: Illustration of the extension routine of randomized planners. To grow the
roadmap toward the sample x′, the planner selects a number of parents
PARENTS(x′) = {P1, P2, P3} from which it applies the STEER(Pi,x

′) method.

sampling as a way to improve planner performance (Bialkowski et al., 2013). In

geometric planners, PARENTS(q, V ) is usually implemented from the Euclidean

norm over C as

PARENTS(q, V ) := arg min
q′∈V

‖q′ − q‖.

This choice results in the so-called Voronoi bias of RRTs (LaValle and Kuffner, 2001).

Both experiments and theoretical analysis support this choice for geometric plan-

ning, however it becomes inefficient for kinodynamic planning, as was showed by

Shkolnik et al. (Shkolnik et al., 2009) on systems as simple as the torque-limited

pendulum.

2.1.3 Steering methods

We focus on steering functions, which can be classified into three categories: ana-

lytical, state-based and control-based steering.

Analytical steering. This category corresponds to the ideal case when one can

compute analytical trajectories respecting the system’s differential constraints, which

are usually called (perfect) steering functions in the literature (LaValle and Kuffner,

2001; Papadopoulos et al., 2014). Unfortunately, it only applies to a handful of sys-

tems. Reeds and Shepp curves for cars are a notorious example of this (Laumond,

1998).

Control-based steering. Generate a control u : [0,∆t] → Uadm, where Uadm

denotes the set of admissible controls, and compute the corresponding trajectory
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by forward dynamics. This approach has been called incremental simulation (Kunz

and Stilman, 2014), control application (LaValle and Kuffner, 2001) or control-space

sampling (Papadopoulos et al., 2014) in the literature. It is widely applicable, as

it only requires forward-dynamic calculations, but usually results in weak steering

functions as the user has no or limited control over the destination state. In works

such as (LaValle and Kuffner, 2001; Hsu et al., 2002), random functions u are

sampled from a family of primitives (e.g., piecewise-constant functions), a number

of them are tried and only the one bringing the system closest to the target is

retained. Linear-Quadratic Regulation (LQR) (Perez et al., 2012; Tedrake, 2009)

also qualifies as control-based steering: in this case, u is computed as the optimal

policy for a linear approximation of the system given a quadratic cost function.

State-based steering. Interpolate a trajectory γint : [0,∆t] → C, for instance

a Bezier curve matching the initial and target configurations and velocities, and

compute a control that makes the system track that trajectory. For fully-actuated

system, this is typically done using inverse dynamics. An interpolated trajectory is

rejected if no suitable control can be found. Compared to control-based steering,

this approach applies to a more limited range of systems, but delivers more control

over the destination state. Algorithm 2 gives the prototype of state-based steering

functions.

Algorithm 2 Prototype of state-based steering functions STEER(x,x′)
1: γint ← INTERPOLATE(x,x′)
2: uint := INVERSE_DYNAMICS(γint(t), γ̇int(t), γ̈int(t))
3: if (∀t ∈ [0,∆t],uint(t) ⊂ Uadm) then
4: return the last state of γint
5: end if
6: return failure

2.2 Probabilistic completeness

2.2.1 Existing completeness results

Randomized planners such as RRT and PRM are both simple to implement yet effi-

cient for geometric planning. The completeness of these planners has been estab-

lished for geometric planning in (LaValle and Kuffner, 2001; Karaman and Frazzoli,

2011; Hsu et al., 1997). In their proof, Hsu et al. (Hsu et al., 1997) quantified
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the problem of narrow passages in configuration space with the notion of (α, β)-

expansiveness. The two constants α and β express a geometric lower bound on the

rate of expansion of reachability areas.

There is, however, a gap between geometric and kinodynamic planning (Donald

et al., 1993) in terms of proving probabilistic completeness. When Hsu et al. ex-

tended their solution to kinodynamic planning (Hsu et al., 2002), they applied

the same notion of expansiveness, but this time in the X × T (state and time)

space with control-based steering. Their proof states that, when α > 0 and β > 0,

their planner is probabilistically complete. However, whether α > 0 or α = 0 in

the non-geometric space X × T remains an open question. As a matter of fact,

the problem of evaluating (α, β) has been deemed as difficult as the initial plan-

ning problem (Hsu et al., 1997). In a parallel line of work, LaValle et al. (LaValle

and Kuffner, 2001) provided a completeness argument for kinodynamic planning,

based on the hypothesis of an attraction sequence, i.e., a covering of the state space

where two major problems of kinodynamic planning are already solved: steering

and antecedent selection. Unfortunately, the existence of such a sequence was not

established.

In the two previous examples, completeness is established under assumptions whose

verification is at least as difficult as the motion planning problem itself. Arguably,

too much of the complexity of kinodynamic planning has been abstracted into hy-

potheses, and these results are not strong enough to hold the claim that their plan-

ners are probabilistically complete in general. This was exemplified recently when

Kunz and Stilman (Kunz and Stilman, 2015) showed that RRTs with control-based

steering were not probabilistically complete for a family of control inputs (namely,

those with fixed time step and best-input extension). At the same time, Papadopou-

los et al. (Papadopoulos et al., 2014) established probabilistic completeness for

the same planner using a different family of control inputs (randomly sampled

piecewise-constant functions). The picture of completeness for kinodynamic plan-

ners therefore seems to be a nuanced one.

Karaman et al. (Karaman and Frazzoli, 2011) introduced the RRT* path planner an

extended it to kinodynamic planning with differential constraints in (Karaman and

Frazzoli, 2010), providing a sketch of proof for the completeness of their solution.

However, they assumed that their planner had access to the optimal cost metric
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and optimal local steering, which restricts their analysis to systems for which these

ideal solutions are known. The same authors tackled the problem from a slightly

different perspective in (Karaman and Frazzoli, 2013) where they supposed that the

PARENTS function had access to w-weighted boxes, an abstraction of the system’s

local controllability. However, they did not show how these boxes can be computed

in practice2 and did not prove their theorem, arguing that the reasoning was similar

to the one in (Karaman and Frazzoli, 2011) for kinematic systems.

2.2.2 System and interpolation assumptions

Terminology. A function is smooth when all its derivatives exist and are contin-

uous. Let ‖ · ‖ denote the Euclidean norm. A function f : A → B between metric

spaces is Lipschitz when there exists a constant Kf such that

∀(x, y) ∈ A, ‖f(x)− f(y)‖ ≤ Kf‖x− y‖.

The (smallest) constant Kf is called the Lipschitz constant of the function f . A

trajectory is a continuous function γ : [0,∆t]→ C, and the distance of a state x ∈ X

to a trajectory γ is

distγ(x) := min
t∈[0,∆t]

‖(γ, γ̇)(t)− x‖ .

A control function u : [0,∆t] → U has δ-clearance when its image is in the δ-

interior of Uadm, i.e., for any time t, B(u(t), δ) ⊂ Uadm. A trajectory q(t) that is

solution to the differential system (2.1) using only controls u(t) ∈ Uadm is called

an admissible trajectory. The kinodynamic motion planning problem is to find an

admissible trajectory from qinit to qgoal.

System assumptions. Our model for an X -state randomized planner is given by

Algorithm 1 using state-based steering. Our first assumption is about actuation:

Assumption 1. The system is fully actuated.

Full actuation allows us to write the equations of motion of the system in general-

ized coordinates in a more convenient form.
2 The definition of w-weighted boxes is quite involved: it depends on the joint flow of vector fields

spanning the tangent space of the system’s manifold.
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Property 1. The equations of motion for a fully-actuated robot (i.e., articulated

system of rigid bodies) with n degrees of freedom can be written as:

M(q)q̈ + q̇>C(q)q̇ + g(q) = τ , (2.2)

with q̈ the vector of joint-angle accelerations,M(q) the n×n joint inertia matrix,

C(q) the n × n × n Coriolis tensor, g(q) the n-dimensional gravity vector, and τ

the n-dimensional vector of actuated torques.

The linear maps M, C and g can be readily computed by Inverse Dynamics algo-

rithms, e.g., the method from Walker and Orin (1982). In the present context, our

controls u ∈ Uadm will denote actuated torques, so that the admissible controls

Uadm form the compact set3 defined by:

Uadm := {u ∈ U , |u| ≤ τmax} , (2.3)

Finally, we suppose that forward and inverse dynamics mappings have Lipschitz

smoothness:

Assumption 2. The forward dynamics function f is Lipschitz continuous in both

of its arguments, and its inverse f−1 (the inverse dynamics function u = f−1(x, ẋ))

is Lipschitz in both of its arguments.

These two assumptions are satisfied when f is given by (2.2) as long as the matrices

M(q) and C(q) are bounded and the gravity term g(q) is Lipschitz. Indeed, for a

small displacement between x and x′,

∥∥u′ − u∥∥ ≤ ‖M‖ ∥∥q̈′ − q̈∥∥+ ‖C(q)‖
∥∥q̇′ − q̇∥∥2 +Kg

∥∥q′ − q∥∥ (2.4)

Let us illustrate this on the double pendulum depicted in Figure 3.9. When both

links have mass m and length l, the gravity term

g(θ1, θ2) = mgl

2 [sin θ1 + sin(θ1 + θ2) sin(θ1 + θ2)]

3 The application of our proof of completeness to an arbitrary compact set presents no technical
difficulty: one can just replace |u| ≤ τmax with d(u, ∂Uadm), with ∂Uadm the boundary of Uadm.
Using Equation (2.3) avoids this level of verbosity.
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(A)

g

21

(B)

Fig. 2.2.: Single (A) and double (B) pendulums. Under torque bounds, these systems must
swing back and forth several times before they can reach for the upright position,
as depicted in (B) (lighter images represent earlier times).

is Lipschitz with constant Kg = 2mgl, while the inertial term is bounded by ‖M‖ ≤

3ml2. When joint angular velocities are bounded by ω, the norm of the Coriolis

tensor is bounded by 2ωml2. Using (2.4), one can therefore derive the Lipschitz

constant Kf−1 of the inverse dynamics function.

Interpolation assumptions. Our first assumption is a mere smoothness require-

ment:

Assumption 3. Interpolated trajectories γint are smooth Lipschitz functions, and

their time-derivatives γ̇int (i.e., interpolated velocities) are also Lipschitz.

The following two assumptions ensure a continuous behavior of the interpolation

procedure:

Assumption 4 (Local boundedness). Interpolated trajectories stay within a neigh-

borhood of their start and end states, i.e., there exists a constant η such that, for

any (x, x′) ∈ X 2, the interpolated trajectory γint : [0,∆t] → C resulting from

INTERPOLATE(x, x′) is included in a ball of center x and radius η ‖x′ − x‖.
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Assumption 5 (Discrete-acceleration convergence). When start and end states

become close, accelerations of interpolated trajectories uniformly converge to the

discrete acceleration between them, i.e., there exists some ν > 0 such that, if

γint : [0,∆t]→ C results from INTERPOLATE(x, x′), then

∀τ ∈ [0,∆t],
∥∥∥∥γ̈int(τ)− ∆q̇

∆tdisc

∥∥∥∥ ≤ ν ‖∆x‖ ,

where ∆tdisc := ‖∆q‖/‖q̇‖.

Note that the expression ∆q̇
∆tdisc

above represents the discrete acceleration between

x and x′. Its continuous analog would be ‖q̇‖dq̇‖dq‖ = ‖q̇‖dq̇
‖q̇‖dt = dq̇

dt .

These three assumptions ensure that the planner interpolates trajectories locally

and “continuously” when x and x′ are close. We will call them altogether second-

order continuity, where “second-order” refers to the discrete acceleration encoded

in small variations (∆q,∆q̇). This continuous behavior plays a key role in our proof

of completeness, as it ensures that denser sampling will allow finding arbitrarily

narrow state-space passages.

Let us consider again the example the double pendulum, for the interpolation func-

tion γ = INTERPOLATE(x, x′) given by

γ : [0,∆t] → C

t 7→ ∆q̇
2∆t t

2 +
(

∆q
∆t −

∆q̇
2

)
t+ q.

(2.5)

The duration ∆t is taken as ∆tdisc, so that γ(0) = q, γ(∆t) = q′ and γ̈ is the

discrete acceleration. This interpolation, like any polynomial function, is Lipschitz

smooth; Assumption 5 is verified by construction, and Assumption 4 can be checked

as follows:

‖γ(t)− γ(0)‖ ≤ t

∥∥∥∥1
2

∆q̇
∆t t+ ∆q

∆t −
∆q̇
2

∥∥∥∥
≤ ∆t

∥∥∥∥ ∆q̇
2∆t t+ ∆q

∆t −
∆q̇
2

∥∥∥∥
≤ 3

2 ‖∆q̇‖∆t+ ‖∆q‖

≤ ‖∆q‖
(

1 + ‖∆q̇‖
‖q̇‖

)
≤ ‖∆q‖

(
1 + o‖∆x‖(1)

)
.
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2.2.3 Completeness theorem

We will use the following two lemmas in the proof of our the theorem:

Lemma 1. Let g : [0,∆t]→ Rk denote a smooth Lipschitz function. Then, for any

(t, t′) ∈ [0,∆t]2, ∥∥∥∥ġ(t)− g(t′)− g(t)
|t′ − t|

∥∥∥∥ ≤ Kg

2 |t
′ − t|.

Proof. For t′ > t,
∥∥∥ġ(t)− g(t′)−g(t)

t′−t

∥∥∥ ≤ 1
t′−t

∥∥∥∫ t′t (ġ(t)− ġ(w))dw
∥∥∥, which is itself ≤

1
t′−t

∫ t′
t ‖ġ(t)− ġ(w)‖dw ≤ Kg

t′−t
∫ t′
t |t− w|dw ≤

Kg
2 (t′ − t).

Lemma 2. If there exists an admissible trajectory γ with δ-clearance in control

space, then there exists δ′ < δ and a neighboring admissible trajectory γ′ with δ′-

clearance in control space whose acceleration never vanishes, i.e., such that ‖γ̈′‖

is always greater than some constant m̈ > 0.

Proof. If there is a time interval [t, t′] on which γ̈ ≡ 0, suffices to add a wavelet

function δγ̈i of arbitrary small amplitude δq̈i and zero integral over [t, t′] to gener-

ate a new trajectory γ̈ + δγ̈ where the acceleration cancels on at most a discrete

number of time instants. Adding accelerations δγ̈i directly is possible thanks to full

actuation, while δ′-clearance can be achieved for δ′ ≤ δ by taking sufficiently small

amplitudes δq̈i.

Suppose now that the roots of γ̈ form a discrete set {t0, t1, . . . , tm}. Let t0 be one

of these roots, and let [t, t′] denote a neighborhood of t0. Repeat the process of

adding wavelet functions δγ̈i and δγ̈j of zero integral over [t, t′] and arbitrary small

amplitude to two coordinates i and j, but this time enforcing that the sum of the

two wavelets satisfies |δγ̈i + δγ̈j | ≥ εij > 0. This method ensures that the root t0

is eliminated (either γ̈i(t0) 6= 0 or γ̈j(t0) 6= 0) without introducing new roots. We

conclude by iterating the process on the finite set of roots.

We can now state our theorem:

32



Theorem 1. Consider a time-invariant differential system (2.1) with smooth Lip-

schitz dynamics f and full actuation over a compact set of admissible controls

Uadm. Suppose that the kinodynamic planning problem between two states xinit

and xgoal admits a smooth Lipschitz solution γ : [0, T ] → C with δ-clearance in

control space. A randomized motion planner (Algorithm 1) using a second-order

continuous interpolation is probabilistically complete.

Proof. Let γ : [0,∆t] → C, t 7→ γ(t) denote a smooth Lipschitz admissible trajectory

from xinit to xgoal, and u : [0,∆t] → Uadm its associated control trajectory with δ-

clearance in control space. Consider two states x = (q, q̇) and x′ = (q′, q̇′), as well

as their corresponding time instants on the trajectory

t := arg min
t
‖(γ(t), γ̇(t))− x‖ ,

t′ := arg min
t

∥∥(γ(t), γ̇(t))− x′
∥∥ .

Supposing without loss of generality that t′ > t, we denote by ∆t = t′ − t and

∆tdisc = ‖q̇‖ / ‖∆q‖. Given a sufficiently dense sampling of the state space, we

suppose that distγ(x) ≤ ρ and distγ(x′) ≤ ρ for a radius ρ such that ρ/∆t = O(∆t)

and ρ/∆tdisc = O(∆t); i.e., the radius ρ is quadratic in the time difference.

Let γint : [0,∆t] → C denote the result of the interpolation between x and x′.

For τ ∈ [0,∆t], the torque required to follow the trajectory γint is uint(τ) :=

f(γint(τ), γ̇int(τ), γ̈int(τ)). Since u has δ-clearance in control space,

|uint(τ)| ≤ |uint(τ)− u(t)|+ |u(t)|

≤ |f(γint(τ), γ̇int(τ), γ̈int(τ))− f(γ(t), γ̇(t), γ̈(t))|+ (1− δ) τmax,

(As previously, vector inequalities are component-wise.) Let us denote by |ũint| the

first term of this inequality. We will now show that |ũint| = O(∆t) → 0 when

∆t → 0, and therefore that |uint(τ)| ≤ τmax for a small enough ∆t (i.e., when

sampling density is high enough). Let us first rewrite it as follows:

|ũint| = |f(γint(τ), γ̇int(τ), γ̈int(τ))− f(γ(t), γ̇(t), γ̈(t))|

≤ ‖f(γint(τ), γ̇int(τ), γ̈int(τ))− f(γ(t), γ̇(t), γ̈(t))‖∞

≤ Kf ‖(γint(τ), γ̇int(τ))− (γ(t), γ̇(t))‖+Kf ‖γ̈int(τ)− γ̈(t)‖
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≤ Kf [(η + ν) ‖∆x‖+ distγ(x)]︸ ︷︷ ︸
position-velocity term (PV)

+Kf

∥∥∥∥ ‖q̇‖‖∆q‖∆q̇ − γ̈(t)
∥∥∥∥︸ ︷︷ ︸

acceleration term (A)

.

The replacement of the norm ‖·‖ by ‖·‖∞ is possible because all norms of Rn are

equivalent (a change in norm will be reflected by a different constant Kf ). The

transition from the second to the third row uses Lipschitz smoothness of f , as well

as the triangular inequality to separate position-velocity and acceleration coordi-

nates. The transition from the third to the fourth row relies on the two interpola-

tion assumptions: local boundedness (yields the η factor in the distance term) and

convergence to the discrete-acceleration (yields the ν factor in the distance term,

as well as the acceleration term).

The position-velocity term (PV) satisfies:

(D) ≤ (2ρ+ ‖∆γ‖)(η + ν) + ρ ≤ 1
2Kγ(η + ν)∆t+ (1 + 2(η + ν))ρ.

Since ρ = O(∆t), we have (PV) = O(∆t) and thus |ũ| ≤ (A) + O(∆t). Next, the

difference (A) can be bounded as:

(A) ≤
∥∥∥∥∆q̇ ‖q̇‖‖∆q‖ −∆γ̇ ‖γ̇(t)‖

‖∆γ‖

∥∥∥∥︸ ︷︷ ︸
(∆)

+ ‖∆γ̇‖
‖∆γ‖

∣∣∣∣‖γ̇(t)‖ − ‖∆γ‖∆t

∣∣∣∣︸ ︷︷ ︸
(A’)

+
∥∥∥∥∆γ̇

∆t − γ̈(t)
∥∥∥∥ .︸ ︷︷ ︸

(A”)

From Lemma 1, the two terms (A’) and (A”) satisfy:

(A’) ≤ Kγ̇

2
‖∆γ̇‖
‖∆γ‖∆t = O(∆t),

(A”) ≤ Kγ̇

2 ∆t = O(∆t),

where the first upper bound O(∆t) comes from the fact that ‖∆γ̇‖‖∆γ‖ ∼
∆t→0

∆t. We

now have |ũ| ≤ (∆) + O(∆t). The term (∆) can be seen as the deviation between

the discrete accelerations of γint and γ. Let us decompose it in terms of norm and

angular deviations:

(∆) ≤
∥∥∥∥( ∆γ̇
‖∆γ̇‖ −

∆q̇
‖∆q̇‖

) ‖γ̇‖ ‖∆γ̇‖
‖∆γ‖ + ∆q̇

‖∆q̇‖

(‖∆γ̇‖ ‖γ̇‖
‖∆γ‖ − ‖∆q̇‖ ‖q̇‖

‖∆q‖

)∥∥∥∥
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≤ 2‖γ̇‖ ‖∆γ̇‖
‖∆γ‖

(
1− cos ̂(∆q̇,∆γ̇)

)
︸ ︷︷ ︸

angular deviation term (θ)

+
∣∣∣∣‖γ̇‖ ‖∆γ̇‖‖∆γ‖ − ‖∆q̇‖ ‖q̇‖

‖∆q‖

∣∣∣∣︸ ︷︷ ︸
norm deviation term (N)

The factor 2‖γ̇‖‖∆γ̇‖
‖∆γ‖ before (θ) is O(1) when ∆t→ 0, while simple vector geometry

then shows that

sin ̂(∆q̇,∆γ̇) ≤ distγ(x) + distγ(x′)
‖∆γ̇‖ ≤ ρ

m̈∆t ,

where m̈ := mint ‖γ̈(t)‖. From Lemma 2, we can assume this minimum acceleration

to be strictly positive. Then, it follows from ρ = O(∆t2) that the sine above is

O(∆t). Recalling the fact that 1 − cos θ < sin θ for any θ ∈ [0, π/2], we have

(θ) = O(∆t).

Finally,

(N) ≤ ‖∆γ̇‖
‖∆γ‖ |‖γ̇‖ − ‖q̇‖|+ ‖q̇‖

∣∣∣∣‖∆γ̇‖‖∆γ‖ −
‖∆q̇‖
‖∆q‖

∣∣∣∣
≤ O(∆t · ρ) + ‖q̇‖ (‖∆q‖+ ‖∆q̇‖)O(ρ)

‖∆q‖ (‖∆q‖+O(ρ))

≤ O(∆t · ρ) + ‖q̇‖ ρ
‖∆q‖+O(ρ) + ‖q̇‖ ‖∆q̇‖

‖∆q‖
O(ρ)

‖∆q‖+O(ρ)

Where we used the fact that ‖∆γ‖ ≤ distγ(x)+‖∆q‖+distγ(x′) = ‖∆q‖+O(ρ), and

similarly for ‖∆γ̇‖. Because ‖∆q‖ = ‖q̇‖∆tdisc + O(∆t2disc) and ρ/∆tdisc = O(∆t),

the last two fractions are O(∆t), so our last term (N) = O(∆t).

Overall, we have derived an upper bound |u(τ)| ≤ (1− δ)τmax +O(∆t). As a con-

sequence, there exists a constant δt > 0 such that, whenever ∆t ≤ δt, interpolated

torques satisfy |u| ≤ τmax and the interpolated trajectory γint = INTERPOLATE(x, x′)

is admissible. Note that the constant δt is uniform, in the sense that it does not de-

pend on the index t on the trajectory.

Conclusion of the proof. We have effectively constructed the attraction sequence

conjectured in (LaValle and Kuffner, 2001). We can now conclude the proof sim-

ilarly to the strategy sketched in this previous work. Let us denote by Bt :=

B((γ, γ̇)(t), δρ), the ball of radius δρ centered on (γ, γ̇)(t) ∈ X , where δρ = O(δt2)

as before. Suppose that the roadmap contains a state x ∈ Bt, and let t′ := t + δt.

If the planner samples a state x′ ∈ Bt′ , the interpolation between x and x′ will be
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successful and x′ will be added to the roadmap. Since the volume of Bt′ is non-zero,

the event {SAMPLE(Xfree) ∈ Bt′} will happen with probability one as the number

of extensions goes to infinity. At the initialization of the planner, the roadmap is

reduced to xinit = (γ(0), γ̇(0)). Therefore, using the property above, by induction

on the number of time steps δt, the last state xgoal = (γ(T ), γ̇(T )) will be eventually

added to the roadmap with probability one, and the planner will find an admissible

trajectory connecting xinit to xgoal. �

2.3 Completeness and interpolation in practice

Shkolnik et al. (2009) showed how RRTs could not be directly applied to kinody-

namic planning due to their poor expansion rate at the boundaries of the roadmap.

They illustrated this phenomenon on the planning problem of swinging up a (sin-

gle) pendulum vertically against gravity. Let us consider the same system, i.e., the

one degree-of-freedom (DOF) pendulum depicted in Figure 3.9 (A), with length

l = 20 cm and mass m = 8 kg. It satisfies the system assumptions of Theorem 1 a

fortiori, as we saw that they apply to the double pendulum.

We assume that the single actuator of the pendulum, corresponding to the joint an-

gle θ in Figure 3.9, has limited actuation power: |τ | ≤ τmax. The static equilibrium

of the system requiring the most torque is given at θ = ±π/2 with τ = 1
2 lmg ≈ 7.84

Nm. Therefore, when τmax < 7.84 Nm, it is impossible for the system to raise up-

right directly, and the pendulum rather needs to swing back and forth to accumulate

kinetic energy before it can swing up. For any τmax > 0, the pendulum can achieve

the swingup in a finite number of swings N , with N →∞ as τmax → 0.

2.3.1 Bezier interpolation

A common solution (Jolly et al., 2009; Škrjanc and Klančar, 2010; Hauser, 2013) to

connect two states (q, q̇) and (q′, q̇′) is the cubic Bezier curve (also called “Hermit

curve”) which is the quadratic function B(t) such that B(0) = q, Ḃ(0) = q̇, B(T ) =

q′ and Ḃ(T ) = q′, where T is the fixed duration of the interpolated trajectory. Its

expression is given by:

B(t) = −2∆q + T (q̇ + q̇′)
T 3 t3 + 3∆q − 2q̇ − q̇′

T 2 t2 + q̇t+ q
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This interpolation is straightforward to implement, however it does not verify our

Assumption 5, as for instance

B̈(0) = 6∆q − 4q̇ − 2q̇′

T 2
∆x→0−−−−→ −6q̇

T 2 6= 0. (2.6)

Our proof of completeness does not apply to such interpolators: even though a

feasible trajectory is sampled as closely as possible (∆x → 0), the interpolated

acceleration will not approximate the smooth acceleration underlying the feasible

trajectory.

Proposition 1. A randomized motion planner interpolating pendulum trajecto-

ries by Bezier curves with a fixed duration T cannot find non-quasi static solutions

by increasing sampling density.

Proof. When actuation power decreases, the pendulum needs to store kinetic en-

ergy in order to swing up, which implies that all swingup trajectories go through

velocities |θ̇| > θ̇swingup(τmax). The function θ̇swingup increases to a positive limit

θ̇lim
swingup as τmax → 0, where θ̇lim

swingup >
√

8g/l from energetic considerations.4 Yet,

feasible accelerations are also bound by |θ̈| ≤ Kτmax for some constant K > 0.

Combining both observations in (2.6) yields:

Kτmax ≥ 6 |θ̇|
T 2 > 6

θ̇swingup(τmax)
T 2 ⇒ θ̇swingup(τmax) ≤ KT 2

6 τmax.

Since the planner uses a constant T and θ̇swingup increases to θ̇lim
swingup >

√
8g/l when

τmax decreases to 0, this inequality cannot be satisfied for arbitrary small actuation

power τmax. Hence, even with an arbitrarily high sampling density around a feasible

trajectory γ(t), the planner will not be able to reconstruct a feasible approximation

γint(t).

2.3.2 Second-order continuous interpolation

Let q̇avg := 1
2(q̇ + q̇′) denote the average velocity between (q, q̇) and (q′, q̇′). Since

the system has only one degree of freedom, one can interpolate trajectories that

4 The expression θ̇ =
√

8g/l corresponds to the kinetic energy 1
4mlθ̇

2 = mgl, the latter being the
(potential) energy of the system at rest in the upward equilibrium. During a successful last swing,
the kinetic energy at θ = 0 is 1

4mlθ̇
2
swingup +Wg +Wτ = mgl, with Wg < 0 the work of gravity

and Wτ the work of actuation forces between θ = 0 and θ = π. The work Wτ vanishes when
τmax → 0.
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comply with our Assumption 5 using constant accelerations with a suitable trajec-

tory duration:

C : [0,∆tC ] → ]− π, π]

t 7→ C(t) = q + tq̇ + t2

2 (∆q̇/∆tC).

One can check that choosing ∆tC = (∆q/q̇avg) results in Ċ(0) = q̇, Ċ(∆tC) =

q̇′, C(0) = q and C(∆tC) = q′. This duration is similar to the term ∆tdisc in

Assumption 5, with both expressions converging to the same value as ∆x→ 0. We

call C(t) the second-order continuous 1-DOF (SOC1) interpolation.

Note that this interpolation function only applies to single-DOF systems. For multi-

DOF systems, the correct duration ∆tC used to transfer from one state to another

is different for each DOF, hence constant accelerations cannot be used. One can

then apply optimization techniques (Perez et al., 2012; Pham et al., 2013a) or use

a richer family of curves such as piecewise linear-quadratic segments (Hauser and

Ng-Thow-Hing, 2010).

2.3.3 Comparison in simulations

According to Theorem 1 and our previous discussion, a randomized planner based

on Bezier interpolation is not expected to be probabilistically complete as τmax → 0,

while the same planner using the SOC1 interpolation will be complete at any rate.

We asserted this statement in simulations of the pendulum with RRT (LaValle and

Kuffner, 2000).

Our implementation of RRT is that described in Algorithm 1, with the addition

of the steer-to-goal heuristic: every m = 100 steps, the planner tries to steer to

xgoal rather than xrand. This extra step speeds up convergence when the sys-

tem reaches the vicinity of the goal area. We use uniform random sampling for

SAMPLE(S), while for PARENTS(x′, V ) returns the k = 10 nearest neighbors of x′

in the roadmap V .

We compared the performance of RRT with the Bezier and SOC1 interpolations,

all other parameters being the same, on a single pendulum with τmax = 5 Nm.

The RRT-SOC1 combo found a four-swing solution after 26,300 RRT extensions,

building a roadmap with 6434 nodes (Figure 2.3).
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Fig. 2.3.: Phase-space portrait of the roadmap constructed by RRT using the second-order
continuous (SOC1) interpolation. The planner found a successful trajectory (red
line) after 26,300 extensions. This planner is probabilistically complete (Theo-
rem 1) thanks to the fact that SOC1 curves satisfy Assumption 5.

Fig. 2.4.: Roadmap constructed by RRT after 100,000 extensions using the Bezier interpo-
lation. Reachable states are distributed in two major areas: a central, diamond
shape corresponding to the states that the planner can connect at any rate, and
two cones directed towards the goal (θ = π or θ = −π). Even after several days
of computations, this planner could not find a successful motion plan. Our com-
pleteness theorem does not apply to this planner because Bezier curves do not
satisfy Assumption 5.

39



Meanwhile, even after one day of computations and more than 200,000 RRT ex-

tensions, the RRT-Bezier combo could not find any solution. Figure 2.4 shows the

roadmap at 100,000 extensions (26,663 nodes). Interestingly, we can distinguish

two zones in this roadmap. The first one is a dense, diamond-shape area near the

downward equilibrium θ = 0. It corresponds to states that are straightforward to

connect by Bezier interpolation, and as expected from Proposition 1, velocities θ̇ in

this area decrease sharply with θ. The second one consists of two cones directed

towards the goal. Both areas exhibit a higher density near the axis θ̇ = 0, which is

also consistent with Proposition 1.

The comparison of the two roadmaps is clear: with a second-order continuous in-

terpolation, the RRT-SOC1 planner leverages additional sampling into exploration

of the state space. Conversely, RRT-Bezier lacks this property (Proposition 1), and

its roadmap stays confined to a subset of the pendulum’s reachable space.

Conclusion

This chapter aimed at furthering the understanding of completeness results for kin-

odynamic motion planning. To the best of our knowledge, this is the first time

that a proof of probabilistic completeness is given with assumptions that can

be straightforwardly checked on the robot for kinodynamic planners that rely on

trajectory interpolation.

From a practical standpoint, we have identified in our analysis the key role played

by second-order continuity of the interpolated trajectories. While the SOC1 interpo-

lation function that we provided here is second-order continuous, its formula does

not generalize to multi-DOF systems. We will introduce in the following chapter a

principled procedure that enables generalization to such systems.
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3Kinodynamic Planning in the

Configuration Space

Kinodynamic planning usually takes places in the state space X , a differential man-

ifold that includes both positions and their higher-order derivatives. Kuffner et al.

(2002) avoided the complexity resulting from high-dimension and differential con-

straints by restricting themselves to quasi-static configurations, yet at the cost of a

severe restriction of the robot’s motion range. In this chapter, we propose an alter-

native approach that preserves planning in the configuration space but is still able

to explore the dynamic, non-quasi-static range of robot motions.

3.1 Time-Optimal Path Parameterization

TOPP is the method at the core of our approach. Its implementation admits two

main variants that have both been explored in the literature: numerical integra-

tion (Bobrow et al., 1985; Shin and McKay, 1985), which we will now review, and

convex optimization (Verscheure et al., 2009; Hauser, 2013). The reader is referred

to Pham (2014) for a deeper review of implementation variants.

Let q denote the n-dimensional vector of generalized coordinates of the robot. Con-

sider second-order inequality constraints of the form

A(q)q̈ + q̇>B(q)q̇ + f(q) ≤ 0, (3.1)

where A(q), B(q) and f(q) are respectively an M ×n matrix, an n×M ×n tensor

and an M -dimensional vector. Inequality (3.1) is general and may represent a large

variety of second-order systems and constraints. Applications include fully-actuated

manipulators 1 subject to velocity, acceleration or torque limits (see e.g. Bobrow et

al., 1985; Shin and McKay, 1986), wheeled vehicles subject to sliding and tip-

1 When dry Coulomb friction or viscous damping are not negligible, one may consider adding an
extra term C(q)q̇. Such a term would simply change the computation of the fields α and β (see
infra), but all the rest of the development would remain the same (Slotine and Yang, 1989).
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over constraints (Shiller and Gwo, 1991), and more importantly in the scope of

the present thesis, humanoid robots in multi-contact configurations (see Chapters 4

and 6). Note however that the list does not include under-actuated systems.

Consider a path P in the configuration space, represented as the underlying path of

a trajectory q(s)s∈[0,send]. Assume that q(s)s∈[0,send] is C1 and piecewise C2 continu-

ous.

Definition 1. A time-parameterization of P, or time-reparameterization of the

trajectory q(s)s∈[0,send], is an increasing scalar function s : [0, T ′] → [0, send].

A time-parameterization can be seen alternatively as a velocity profile, which is

the curve ṡ(s)s∈[0,send] in the s–ṡ plane. We say that a time-parameterization or,

equivalently, a velocity profile, is valid if s(t)t∈[0,T ′] is continuous, ṡ is always

strictly positive, and the retimed trajectory q(s(t))t∈[0,T ′] satisfies the constraints

of the system.

To check whether the retimed trajectory satisfies the system constraints, one may

differentiate q(s(t)) with respect to t:

q̇ = qsṡ, q̈ = qss̈+ qssṡ2, (3.2)

where dots denote differentiation with respect to the time parameter t and qs = dq
ds

and qss = d2q
ds2 . Substituting (3.2) into (3.1) then leads to

s̈A(q)qs + ṡ2A(q)qss + ṡ2q>s B(q)qs + f(q) ≤ 0,

which can be rewritten as

s̈a(s) + ṡ2b(s) + c(s) ≤ 0, (3.3)

where

a(s) := A(q(s))qs(s),

b(s) := A(q(s))qss(s) + qs(s)>B(q(s))qs(s), (3.4)

c(s) := f(q(s)).

Each row i of equation (3.3) is of the form ai(s)s̈+ bi(s)ṡ2 + ci(s) ≤ 0.
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• If ai(s) > 0, then one has s̈ ≤ −ci(s)−bi(s)ṡ2

ai(s) . Define the acceleration upper

bound βi(s, ṡ) := −ci(s)−bi(s)ṡ2

ai(s) ;

• If ai(s) < 0, then one has s̈ ≥ −ci(s)−bi(s)ṡ2

ai(s) . Define the acceleration lower

bound αi(s, ṡ) := −ci(s)−bi(s)ṡ2

ai(s) .

One can then define, for each (s, ṡ),

α(s, ṡ) := max
i
αi(s, ṡ), β(s, ṡ) := min

i
βi(s, ṡ).

From the above transformations, one can conclude that q(s(t))t∈[0,T ′] satisfies the

constraints (3.1) if and only if

∀t ∈ [0, T ′] α(s(t), ṡ(t)) ≤ s̈(t) ≤ β(s(t), ṡ(t)). (3.5)

Note that (s, ṡ) 7→ (ṡ, α(s, ṡ)) and (s, ṡ) 7→ (ṡ, β(s, ṡ)) can be viewed as two vec-

tor fields in the s–ṡ plane. One can integrate velocity profiles following the field

(ṡ, α(s, ṡ)) (from now on, α in short) to obtain minimum acceleration profiles (or

α-profiles), or following the field β to obtain maximum acceleration profiles (or

β-profiles).

Next, observe that if α(s, ṡ) > β(s, ṡ) then, from (3.5), there is no possible value for

s̈. Thus, to be valid, every velocity profile must stay below the Maximum Velocity

Curve (MVC) defined by 2

MVC(s) :=

 min{ṡ ≥ 0 : α(s, ṡ) = β(s, ṡ)} if α(s, 0) ≤ β(s, 0),

0 if α(s, 0) > β(s, 0).
(3.6)

It was shown (see e.g. Shiller and Lu, 1992) that the time-minimal velocity profile

is obtained by a bang-bang-type control, i.e., one where the optimal profile follows

alternatively the β and α fields while always staying below the MVC. A method to

find the optimal profile then consists in (see Figure 3.1A):

2 Setting MVC(s) = 0 whenever α(s, 0) > β(s, 0) as in (3.6) precludes multiple-valued MVCs (see
Shiller and Dubowsky, 1985). We made this choice for clarity of exposition. However, in the
implementation, we did consider multiple-valued MVCs.
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• find all the possible α→ β switch points. There are three types of such switch

points: “discontinuous”, “singular” or “tangent” and they must all be on the

MVC. The procedure to find these switch points is detailed in Pham (2014);

• from each of these switch points, integrate backward following α and forward

following β to obtain the Limiting Curve (LC) (Slotine and Yang, 1989);

• construct the Concatenated Limiting Curve (CLC) by considering, for each s,

the value of the lowest LC at s;

• integrate forward from (0, ṡbeg) following β and backward from (send, ṡend)

following α, and consider the intersection of these profiles with each other or

with the CLC. Note that the path velocities ṡbeg and ṡend are computed from

the desired initial and final velocities vbeg and vend by

ṡbeg := vbeg/‖qs(0)‖, ṡend := vend/‖qs(send)‖. (3.7)

0 send

s
.

Max Vel Curve
(MVC)

Limiting Curves (LC)
Concat. Limit. Curve (CLC)

switch point
α→β

send

sbeg
.

.

α
α

α
β

β β

switch point
β→α

β
α

s
.

A B

s1 s2

<0

>0

Fig. 3.1.: A: Illustration for Maximum Velocity Curve (MVC) and Concatenated Limiting
Curve (CLC). The optimal velocity profile follows the green β-profile, then a
portion of the CLC, and finally the yellow α-profile. B: Illustration for the Switch
Point Lemma.

We now prove two lemmas that will be important later on.

Lemma 3 (Switch Point Lemma). Assume that a forward β-profile hits the MVC

at s = s1 and a backward α-profile hits the MVC at s = s2, with s1 < s2,

then there exists at least one α → β switch point on the MVC at some position

s3 ∈ [s1, s2].

Proof. At (s1,MVC(s1)), the angle from the vector β to the tangent to the MVC is

negative (see Figure 3.1B). In addition, since we are on the MVC, we have α = β,

thus the angle from α to the tangent is negative too. Next, at (s2,MVC(s2)), the
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angle of α to the tangent to the MVC is positive (see Figure 3.1B). Thus, since the

vector field α is continuous, there exists, between s1 and s2

1. either a point where the angle between α and the tangent to the MVC is 0 –

in which case we have a tangent switch point;

2. or a point where the MVC is discontinuous – in which case we have a discon-

tinuous switch point;

3. or a point where the MVC is continuous but non differentiable – in which

case we have a singular switch point.

For more details, the reader is referred to Pham (2014).

Lemma 4 (Continuity of the CLC). Either one of the LC’s reaches ṡ = 0, or the

CLC is continuous.

Proof. Assume by contradiction that no LC reaches ṡ = 0 and that there exists a

“hole” in the CLC. The left border s1 of the hole must then be defined by the

intersection of the MVC with a forward β-LC (coming from the previous α → β

switch point), and the right border s2 of the hole must be defined by the intersection

of the MVC with a backward α-LC (coming from the following α → β switch

point). By Lemma 3 above, there must then exist a switch point between s1 and s2,

which contradicts the definition of the hole.

3.2 Admissible Velocity Propagation

This section presents the Admissible Velocity Propagation (AVP) algorithm, which

is the key development thanks to which we will connect TOPP to kinodynamic

planning. This algorithm takes as inputs:

• a path P in the configuration space, and

• an interval [ṡmin
beg , ṡ

max
beg ] of initial path velocities;

45



and returns the interval (cf. Theorem 2) [ṡmin
end , ṡ

max
end ] of all path velocities that the

system can reach at the end of P after traversing P while respecting the system

constraints. 3 The algorithm comprises the following three steps:

A Compute the limiting curves;

B Determine the maximum final velocity ṡmax
end by integrating forward from s = 0;

C Determine the minimum final velocity ṡmin
end by bisection search and by integrating

backward from s = send.

We now detail each of these steps.

3.2.1 Limiting curves

We first compute the Concatenated Limiting Curve (CLC) as shown in Section 3.1.

From Lemma 4, either one of the LC’s reaches 0 or the CLC is continuous. The

former case is covered by A1 below, while the latter is covered by A2–5.

A1 One of the LC’s hits the line ṡ = 0. In this case, the path cannot be traversed

by the system without violating the kinodynamic constraints: AVP returns

Failure. Indeed, assume that a backward (α) profile hits ṡ = 0. Then any

profile that goes from s = 0 to s = send must cross that profile somewhere

and from above, which violates the α bound (see Figure 3.2A). Similarly, if a

forward (β) profile hits ṡ = 0, then that profile must be crossed somewhere

and from below, which violates the β bound. Thus, no valid profile can go

from s = 0 to s = send;

The CLC is now assumed to be continuous and strictly positive. Since it is bounded

by s = 0 from the left, s = send from the right, ṡ = 0 from the bottom and the MVC

from the top, there are only four exclusive and exhaustive cases, listed below.

A2 The CLC hits the MVC while integrating backward and while integrating for-

ward. In this case, let ṡ∗beg := MVC(0) and go to B. The situation where there

is no switch point is assimilated to this case;

3 Johnson and Hauser (2012) also introduced a velocity interval propagation algorithm along a path
but for pure kinematic constraints and moving obstacles.
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s
.
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Fig. 3.2.: Illustration for step A (computation of the LC’s). Left: illustration for case A1. A
profile that crosses an α-CLC violates the α bound. Right: illustration for case
A3.

A3 The CLC hits s = 0 while integrating backward, and the MVC while integrating

forward (see Figure 3.2B). In this case, let ṡ∗beg := CLC(0) and go to B;

A4 The CLC hits the MVC while integrating backward, and s = send while inte-

grating forward. In this case, let ṡ∗beg := MVC(0) and go to B;

A5 The CLC hits s = 0 while integrating backward, and s = send while integrating

forward. In this case, let ṡ∗beg := CLC(0) and go to B.

3.2.2 Maximum final velocity

Note that, in any of the cases A2–5, ṡ∗beg was defined so that no valid profile can

start above it. Thus, if ṡmin
beg > ṡ∗beg, the path is not traversable: AVP returns

Failure. Otherwise, the interval of valid initial velocities is [ṡmin
beg , ṡ

max∗
beg ] where

ṡmax∗
beg := min(ṡmax

beg , ṡ
∗
beg).

Definition 2. Under the nomenclature introduced in Definition 1, we say that a

velocity ṡend is a valid final velocity if there exists a valid profile that starts at

(0, ṡ0) for some ṡ0 ∈ [ṡmin
beg , ṡ

max
beg ] and ends at (send, ṡend).

We argue that the maximum valid final velocity can be obtained by integrating

forward from ṡmax∗
beg following β. Let’s call Φ the velocity profile obtained by doing

so. Since Φ is continuous and bounded by s = send from the right, ṡ = 0 from the

bottom, and either the MVC or the CLC from the top, there are four exclusive and

exhaustive cases, listed below (see Figure 3.3 for illustration).
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Fig. 3.3.: Illustration for step B: one can determine the maximum final velocity by inte-
grating forward from (0, ṡ∗beg).

B1 Φ hits ṡ = 0 (cf. profile B1 in Figure 3.3). Here, as in the case A1, the path is

not traversable: AVP returns Failure. Indeed, any profile that starts below

ṡmax∗
beg and tries to reach s = send must cross Φ somewhere and from below,

thus violating the β bound;

B2 Φ hits s = send (cf. profile B1 in Figure 3.3). Then Φ(send) corresponds to the

ṡmax
end we are looking for. Indeed, Φ(send) is reachable – precisely by Φ –, and

to reach any value above Φ(send), the corresponding profile would have to

cross Φ somewhere and from below;

B3 Φ hits the CLC. There are two sub-cases:

1. If we proceed from cases A4 or A5 (in which the CLC reaches s = send,

cf. profile B3 in Figure 3.3), then CLC(send) corresponds to the ṡmax
end

we are looking for. Indeed, CLC(send) is reachable – precisely by the

concatenation of Φ and the CLC –, and no value above CLC(send) can

be valid by the definition of the CLC;

2. If we proceed from cases A2 or A3, then the CLC hits the MVC while

integrating forward, say at s = s1; we then proceed as in case B4 below;

B4 Φ hits the MVC, say at s = s1. It is clear that MVC(send) is an upper bound

of the valid final velocities, but we have to ascertain whether this value is

reachable. For this, we use the predicate IS_VALID defined in Algorithm 3 of

C:

• if IS_VALID(MVC(send)), then MVC(send) is the ṡmax
end we are looking for;
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• else, the path is not traversable: AVP returns Failure. Indeed, as we

shall see, if for a certain ṡtest, the predicate IS_VALID(ṡtest) is False,

then no velocity below ṡtest can be valid either.

3.2.3 Minimum final velocity

Assume that we proceed from the cases B2–4. Consider a final velocity ṡtest where

• ṡtest < Φ(send) if we proceed from B2;

• ṡtest < CLC(send) if we proceed from B3a;

• ṡtest < MVC(send) if we proceed from B3b or B4.

Let us integrate backward from (send, ṡtest) following α and call the resulting profile

Ψ. We have the following lemma.

Lemma 5. Ψ cannot hit the MVC before hitting either Φ or the CLC.

Proof. If we proceed from B2 or B3a, then it is clear that Ψ must first hit Φ (case

B2) or the CLC (case B3a) before hitting the MVC. If we proceed from B3b or B4,

assume by contradiction that Ψ hits the MVC first at a position s = s2. Then by

Lemma 3, there must exist a switch point between s2 and the end of the CLC (in

case B3b) or the end of Φ (in case B4). In both cases, there is a contradiction with

the fact that the CLC is continuous.

We can now detail in Algorithm 3 the predicate IS_VALID which assesses whether a

final velocity ṡtest is valid.

At this point, we have that, either the path is not traversable, or we have determined

ṡmax
end in B. Remark from C3–5 that, if some ṡ0 is a valid final velocity, then any

ṡ ∈ [ṡ0, ṡ
max
end ] is also valid. Similarly, from C1 and C2, if some ṡ0 is not a valid

final velocity, then no ṡ ≤ s0 can be valid. We have thus established the following

result:

Theorem 2. The set of valid final velocities is an interval.

This interval property enables one to efficiently search for the minimum final ve-

locity as follows. First, test whether 0 is a valid final velocity: if IS_VALID(0), then
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Algorithm 3 IS_VALID
Input: candidate final velocity ṡtest Output: True iff there exists a valid velocity
profile with final velocity ṡtest
Consider the profile Ψ constructed above. Since it must hit Φ or the CLC before hit-
ting the MVC, the following five cases are exclusive and exhaustive (see Figure 3.4
for illustrations):

C1 Ψ hits ṡ = 0 (Figure 3.4, profile C1). Then, as in cases A1 or B1, no velocity
profile can reach stest: return False;

C2 Ψ hits s = 0 for some ṡ0 < ṡmin
beg (see Figure 3.4, profile C2). Then any profile

that ends at ṡtest would have to hit Ψ from above, which is impossible: return
False;

C3 Ψ hits s = 0 at a point ṡ0 ∈ [ṡmin
beg , ṡ

max∗
beg ] (Figure 3.4, profile C3). Then ṡtest can

be reached following the valid velocity profile Ψ: return True. (Note that, if
ṡ0 > ṡmax∗

beg then Ψ must have crossed Φ somewhere before arriving at s = 0,
which is covered by case C4 below);

C4 Ψ hits Φ (Figure 3.4, profile C4). Then ṡtest can be reached, precisely by the
concatenation of a part of Φ and Ψ: return True;

C5 Ψ hits the CLC (Figure 3.4, profile C5). Then ṡtest can be reached, precisely by
the concatenation of Φ, a part of the CLC and Ψ: return True.

0 send

s
.

stest
.

Φ

Ψ

C1C2

C3

C4 C5

sbeg
max

sbeg
min

.

.

Fig. 3.4.: Illustration for the predicate IS_VALID: one can assess whether a final velocity
ṡtest is valid by integrating backward from (send, ṡtest).
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the sought-after ṡmin
end is 0. Else, run a standard bisection search with initial bounds

(0, ṡmax
end ] where 0 is not valid and ṡmax

end is valid. Thus, after executing log2(1/ε) times

the routine IS_VALID, one can determine ṡmin
end with a precision ε.

3.2.4 Implementation

AVP can be readily adapted from the numerical integration approach to TOPP. Pham

et al. (2013b) implemented AVP in about 100 lines of C++ code based on the TOPP

library (Pham, 2014). The latter now implements both features in a single package,

which has been publicly released online:

https://github.com/quangounet/TOPP

The library includes the following extensions. We will not cover them in here, and

refer the reader to suitable references for further investigation:

First-order velocity bounds: The derivation present here encounters a singular-

ity when A(q) = 0 in Equation (3.1). Zlajpah (1996) showed how to further

take into account velocity bounds of the form q̇>Bv(q)q̇ + fv(q) ≤ 0.

Backward integration: the “AVP-backward” problem is: given an interval of final

velocities [ṡmin
end , ṡ

max
end ], compute the interval [ṡmin

beg , ṡ
max
beg ] of all possible initial

velocities. Lertkultanon and Pham (2014) showed how this problem can be

solved similarly to AVP via backward integration and bisection search of the

initial (instead of final) velocities. Solving the backward version of the prob-

lem enables the integration with the bi-directional variant of RRT.

3.3 Combining AVP with randomized planners

The AVP algorithm can be combined with various iterative path planners. We now

detail a planner, which we call AVP-RRT, that integrates AVP within the original RRT

algorithm described by LaValle and Kuffner (2000).
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3.3.1 AVP-RRT

The AVP-RRT algorithm is described in Algorithm 7 and illustrated in Figure 3.5.

It inherits from RRT the iterative extension of a tree T in the configuration space.

However, in contrast with the standard RRT, a vertex V here consists of a triple

(V .config, V .inpath, V .interval) where V .config is an element of the configuration

space C, V .inpath is a path P ⊂ C that connects the configuration of V ’s parent to

V .config, and V .interval is the interval of reachable velocities at V .config, that is,

at the end of V .inpath.

At each iteration, a random configuration qrand is generated. The EXTEND routine

(see Algorithm 5) then tries to extend the tree T towards qrand from the closest – in

a certain metric d – vertex in T . The algorithm terminates when either

• A newly-found vertex can be connected to the goal configuration (line 10 of

Algorithm 7). In this case, AVP guarantees by recursion that there exists a

path from qstart to qgoal and that this path is time-parameterizable;

• After Nmaxrep repetitions, no vertex could be connected to qgoal. In this case,

the algorithm returns Failure.

The other routines are defined as follows:

• CONNECT(V, qgoal) attempts at connecting directly V to the goal configura-

tion qgoal, using the same algorithm as in lines 2 to 10 of Algorithm 5, but with

the further requirement that the goal velocity is included in the final velocity

interval.

• COMPUTE_TRAJECTORY(T , qgoal) reconstructs the entire path Ptotal from

qstart to qgoal by recursively concatenating the V .inpath. Next, Ptotal is time-

parameterized by applying TOPP. The existence of a valid time-parameterization

is guaranteed by recursion by AVP.

• NEAREST_NEIGHBOR(T , q) returns the vertex of T whose configuration is

closest to configuration q in the metric d.

• INTERPOLATE(V, q) returns a path Pnew connecting V .config to q. This path

needs to be first-order continuous.

By first-order continuous, we mean that the interpolated path Pnew : q : [0, send]→ C

is
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Algorithm 4 AVP-RRT
Input: qstart, qgoal Output: A valid trajectory connecting qstart to qgoal or
Failure

1: T ← NEW_TREE()
2: Vstart ← NEW_VERTEX()
3: Vstart.config← qstart; Vstart.inpath← Null; Vstart.interval← [0, 0]
4: INITIALIZE(T , Vstart)
5: for rep = 1 to Nmaxrep do
6: qrand ← RANDOM_CONFIG()
7: Vnew ← EXTEND(T , qrand)
8: if EXTEND succeeds then
9: ADD_VERTEX(T , Vnew)

10: if CONNECT(Vnew, qgoal) succeeds then
11: return COMPUTE_TRAJECTORY(T , qgoal)
12: end if
13: end if
14: end for
15: return Failure

V
el

oc
ity

Configuration spaceVstart

qrand
qgoal

Vnew

Vnear

s

smax

.

.

Pnew

min

Fig. 3.5.: Illustration for AVP-RRT. The horizontal plane represents the configuration space
while the vertical axis represents the path velocity space. Black areas represent
configuration space obstacles. A vertex in the tree is composed of a configuration
(blue disks), the incoming path from the parent (blue curve), and the interval of
admissible velocities (bold magenta segments). At each tree extension step, one
interpolates a smooth, collision-free path in the configuration space and prop-
agates the interval of admissible velocities along that path using AVP. The fine
magenta line shows one possible valid velocity profile (which is guaranteed to
exist by AVP) “above” the path connecting qstart and qnew.
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Algorithm 5 EXTEND
Input: T , qrand Output: A new vertex Vnew or Null

1: Vnear ← NEAREST_NEIGHBOR(T , qrand)
2: (Pnew, qnew)← INTERPOLATE(Vnear, qrand)
3: if P is collision-free then
4: [ṡmin, ṡmax]← AVP(Pnew, Vnear.interval)
5: if AVP succeeds then
6: Vnew ← NEW_VERTEX()
7: Vnew.config← qnew
8: Vnew.inpath← Pnew
9: Vnew.interval← [ṡmin, ṡmax]

10: return Vnew
11: end if
12: end if
13: return Failure

1. smooth in the Lipschitz sense and locally bounded, as for second-order conti-

nuity (see Section 2.2.2)

2. matches the boundary conditions that q(0) = V .config, q(send) = q and q̇(0)

is aligned with the last velocity vector vend of V .

The second condition ensures that the concatenation of V .inpath and the Pnew is

C1 continuous at V .conFigure Note how it only involves velocity coordinates, while

the property of second-order continuity defined in Chapter 2 binds interpolated ac-

celerations. First-order continuity is a weaker requirement thanks to the ability of

AVP to connect acceleration coordinates in a later step. The resulting planner still

achieves probabilistic completeness, as we will see below.

We showed in Chapter 2 how second-order continuity of interpolation functions was

crucial to state-space planners. Yet, we did not provide a second-order continuous

solution for systems with more than one DOF. Now that we have integrated TOPP

within AVP-RRT, we can to generate such solutions for multi-DOF systems from first-

order continuous interpolations. This time, Bezier curves can be utilized to produce

the latter.

3.3.2 Comparison to state-space planning

We demonstrate the extension to multi-DOF systems on the torque-limited double-

pendulum depicted in Figure 3.9 (B). Such a pendulum can be seen as a 2-link

manipulator, so that the reduction to the form of (3.1) is straightforward. The task
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is again to bring the pendulum from its initial state (θ1, θ2, θ̇1, θ̇2) = (0, 0, 0, 0) to the

upright state (θ1, θ2, θ̇1, θ̇2) = (π, 0, 0, 0), while respecting the torque bounds. For

simplicity, we did not consider self-collision issues.

Any trajectory that achieves the task must pass through a configuration where θ1 =

π/2. Note that the configuration with θ1 = π/2 that requires the smallest torque at

the first joint to stay still is (θ1, θ2) = (π/2, π). Let then τqs
1 be this smallest torque.

It is clear that, if τmax
1 < τqs

1 , then no quasi-static trajectory can achieve the task.

We chose a link length l = 0.2 m and mass m = 8 kg for each link, which yields

τqs
1 = 15.68 N·m. For information, the smallest torque at the second joint to keep

the configuration (θ1, θ2) = (0, π/2) stationary was 7.84 N·m.

We implemented AVP-RRT and a state-space RRT on the

K nearest neighbors: attempting connection from K > 1 nearest neighbors can

improve the performance of RRT. We compared various values of the neigh-

borhood size K ∈ {1, 10, 40, 100}.

Steer-to-goal: every m extension attempts, the planner tries to steer the new state

directly to xgoal. We observed that the choice of the period m of this operation

did not significantly alter the performance of the algorithm, and thus only

report results for the reasonable value m = 5.

Metric: AVP-RRT uses the configuration-space distance defined by

dC(qa, qb) = 1
2
∑
j=1,2

√
1− cos(qaj − qbj),

which is similar to an Euclidean metric but takes into account the periodicity

of the joint values. Similarly, the state-space RRT uses the metric:

dX (xa,xb) = 1
4
∑
j=1,2

√
1− cos(qaj − qbj) + 1

4Vmax

∑
j=1,2

|vaj − vbj |,

where Vmax denotes the maximum velocity bound set in the uniform random

sampling.

We carried experiments for (τmax
1 , τmax

2 ) ∈ {(11, 7), (13, 5), (11, 5)} (N·m). Inverse

Dynamics computations required by TOPP were performed using OpenRAVE (Di-
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ankov, 2010), which implements the algorithm from Walker and Orin (1982). We

ran 40 simulations for each value of (τmax
1 , τmax

2 ) on a 2 GHz Intel Core Duo com-

puter with 2 GB RAM. Figure 3.6, 3.7, 3.8 and Table 3.1 summarize the results.

τmax = (11, 7) τmax = (11, 5)
Planner Success Search time Success Search time

rate (min) rate (min)
AVP-RRT 100% 3.3±2.6 100% 9.8±12.1

RRT-1 40% 70.0±34.1 47.5% 63.8±36.6
RRT-10 82.5% 53.1±59.5 85% 56.3±60.1
RRT-40 92.5% 44.6±42.6 87.5% 54.6±52.2

RRT-100 82.5% 88.4±54.0 92.5% 81.2±46.7

Tab. 3.1.: Comparing the success rate and search time of the configuration-space AVP-
RRT planner versus its state-space counterpart. On instances with severe torque
constraints, AVP-RRT always found solutions, and did so much faster than the
state-space RRT in all our experiments.

In the two problem instances, AVP-RRT was respectively 13.4 and 5.6 times faster

than the best state-space RRT in terms of search time. We noted however that the

search time of AVP-RRT increased significantly from instance (τ 1
max, τ

2
max) = (11, 5)

to instance (τ 1
max, τ

2
max) = (11, 7), while that of RRT only marginally increased. This

may be caused by the “superposition” phenomenon: as torque constraints become

tighter, more “pumping” swings are necessary to reach the upright configuration.

However, since our metric was only on the configuration-space variables, config-

urations with different speeds (corresponding to different pumping cycles) may

become indistinguishable. This issue can be addressed in future work by including

a measure of reachable velocity intervals directly into the metric dC .

3.3.3 Implementation

In these simulations, we used the Python implementation of AVP developed in Pham

et al. (2013b). See (Pham et al., 2014) for details on how the various parameters

of the state-space RRT were tuned. The source code is also publicly available:

https://github.com/stephane-caron/rss-2013
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Fig. 3.6.: Performances of AVP-RRT compared to that of a state-space RRT. Left: percentage
of trials that have reached the goal area at given time instants for τmax = (11, 7).
Right: individual plots for each trial. Each curve shows the distance to the goal
as a function of time for a given instance (red: AVP-RRT, blue: RRT-40). Dots
indicate the time instants when a trial successfully terminated. Stars show the
mean values of termination times.

Fig. 3.7.: Performances of AVP-RRT compared to that of a state-space RRT. Left: percentage
of trials that have reached the goal area at given time instants for τmax = (11, 5).
Right: individual plots for each trial. Each curve shows the distance to the goal
as a function of time for a given instance (red: AVP-RRT, blue: RRT-40). Dots
indicate the time instants when a trial successfully terminated. Stars show the
mean values of termination times.
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Fig. 3.8.: RRT, kNN-RRT and VIP-RRT ran over 40 instances of a double inverted pendulum
with torque limits (8 Nm on the first joint and 4 Nm on the second one). The
horizontal axis shows computation time, while the vertical axis represents the
number of successful planners (left) and the distance to the goal area (right)
averaged over all runs.

58



A
B

C
D

Fi
g.

3.
9.
:

Sw
in

gi
ng

up
a

fu
lly

-a
ct

ua
te

d
do

ub
le

pe
nd

ul
um

.
A

ty
pi

ca
ls

ol
ut

io
n

fo
r

th
e

ca
se

(τ
m

ax
1

,τ
m

ax
2

)=
(1

1,
5)

N
·m

,w
it

h
tr

aj
ec

to
ry

du
ra

ti
on

1.
88

s
(s

ee
al

so
th

e
at

ta
ch

ed
vi

de
o)

.
A

:
Th

e
tr

ee
in

th
e

(θ
1,
θ 2

)
sp

ac
e.

Th
e

fin
al

pa
th

is
hi

gh
lig

ht
ed

in
m

ag
en

ta
.

B
:

sn
ap

sh
ot

s
of

th
e

tr
aj

ec
to

ry
,

ta
ke

n
ev

er
y

0.
1

s.
Sn

ap
sh

ot
s

ta
ke

n
ne

ar
th

e
be

gi
nn

in
g

of
th

e
tr

aj
ec

to
ry

ar
e

lig
ht

er
.

C
:

Ve
lo

ci
ty

pr
ofi

le
s

in
th

e
(s
,ṡ
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3.4 Probabilistic completeness of AVP-based

planners

Essentially, establishing the probabilistic completeness of an AVP-based planner re-

quires proving the following two propositions: (1) any smooth path P in the con-

figuration space will be approximated as closely as needed by the sampling process

when computation time goes to infinity; (2) if a smooth path P obtained by the

sampling process can be time-parameterized – according to a certain velocity profile

v – into a solution trajectory, then v is contained within the velocity band propa-

gated by AVP. Indeed, assuming the above two propositions, a “high-level” proof of

probabilistic completeness of an AVP-based planner can go as follows.

Let d designate the L1 distance between two trajectories or between two paths:

d(Π,Π′) = supt∈[0,T ] ‖Π(t)−Π′(t)‖ and d(P,P ′) = sups∈[0,1] ‖P(s)−P ′(s)‖. Assume

that there exists a smooth state-space trajectory Π that solves the query, with ∆-

clearance in the state space, i.e., every smooth trajectory Π′ such that d(Π,Π′) ≤ ∆

also solves the query. Let P be the underlying path of Π in the configuration space.

By proposition (1), with probability 1, there exists a time instant when the sampling

process will generate a smooth path P ′ such that d(P,P ′) ≤ ∆/3 and that the

distances between the unit tangent vectors along P and P ′ are also bounded by

∆/3. One can then construct a velocity profile v′ above P ′ (see Figure 3.10), such

that the time-parameterization of P ′ according to that profile yields a trajectory Π′

within a radius ∆ of Π. As Π has ∆-clearance, Π′ also solves the query. Thus, by

proposition (2), the velocity profile (or time-parameterization) v′ must be contained

within the velocity band propagated by AVP, which implies finally that P ′ can be

successfully time-parameterized in the last step of the planner.

As presented in Section 3.3, AVP-RRT might not be probabilistically complete, essen-

tially because it might not satisfy proposition (1). Note that proving proposition (1)

for AVP-PRM would likely be less troublesome. We now present a modification to

AVP-RRT (basically a hybridization with PRM), which enables us to prove proposi-

tion (1).

Fix a δ > 0. Each time a random configuration qrand is sampled, after the original

AVP-RRT propagation attempt, we consider the set S of existing vertices within a
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Fig. 3.10.: Illustration for the existence of an admissible velocity profile above an approxi-
mated path in the proof of completeness for AVP-RRT.
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Fig. 3.11.: Approximation of a given smooth path in the proof of completeness for AVP-
RRT.
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distance δ of qrand in the configuration space. We select K random vertices within

S (the value of K will be determined later), and attempt to connect these vertices

to qrand through the usual interpolation and AVP procedures. For each successful

connection, we create a new vertex V ′new, which has the same configuration qrand

but a different “inpath” and a different “interval”, depending on the parent vertex in

S (which could very well be the one considered in the original AVP-RRT attempt).

We can now prove proposition (1) for the modified AVP-RRT.

Proposition 2. Consider a path P in the configuration space. Assume that the

function s 7→ u(s), where u(s) is the unit tangent vector at P(s), is uniformly

continuous. Then the sampling process of the modified AVP-RRT will approximate

P as closely as needed in both positions and unit tangent vectors.

Proof. By the uniform continuity of the unit tangent vector function, there exists a

δ such that if ‖P(s)−P(s′)‖ ≤ δ then ‖u(s)−u(s′)‖ ≤ ∆/3. Now we chop the path

P into n sub-paths P1,. . . ,Pn of length at most δ. Since for each sub-paths the unit

tangent vector varies at most by ∆/3, they look like straight segments if ∆ is small

enough, see Figure 3.11.

Next, we prove proposition (2).

Proposition 3. Consider a path P obtained by the sampling process. If there

exists a profile v such that the time-parameterization of P according to v yields a

valid trajectory, then v is contained within the velocity band propagated by AVP.

Proof. Let P1,. . . ,Pn be the n interpolated paths resulting from the sampling pro-

cess, which together form P by concatenation. Let v1,. . . ,vn be the corresponding

subdivisions of v. We prove by induction on i ∈ [0, n] that the concatenated profile

[v1, . . . , vi] is contained within the velocity band propagated by AVP.

For i = 0, i.e., at the start vertex, v(0) = 0 is contained within the initial velocity

band, which is [0, 0]. Assume that the statement holds at i. This imply in partic-

ular that the final value of vi, which is also the initial value of vi+1, belongs to

[vmin, vmax], where (vmin, vmax) are the values returned by AVP at step i. Next, con-

sider the velocity band that AVP propagates at step i + 1 from [vmin, vmax]. Since
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vi+1(0) ∈ [vmin, vmax] and that vi+1 is continuous, the whole profile vi+1 will be

contained in the velocity band propagated by AVP by construction.
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Conclusion

By the end of this chapter, we have designed, theoretically proved, implemented

and tested–on small systems–a general framework for motion planning of multi-

DOF systems subject to kinodynamic constraints. To the best of our knowledge,

it is the first time that a kinodynamic planner in the configuration space can

discover truly dynamic motions, that is to say, motions that do not enforce static

stability neither in their trajectories (edges of the roadmap) nor at junction postures

(nodes of the roadmap).
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4Contact and friction

„L’Académie voulant un travail qui puisse diriger dans le calcul des ma-

chines exige « que les lois du frottement et l’examen des effets résultans

de la roideur des cordages soient déterminés d’après des expériences

nouvelles et faites en grand [...] ». Je ne me flatte pas d’avoir rempli les

vues aussi vastes qu’utiles de cette illustre compagnie mais je crois avoir

fait quelques pas dans la carrière qu’elle a ouverte.

— Charles Augustin Coulomb

(Théorie des machines simples, 1821)

Contact interactions are one of the greatest challenges for mobile mechanisms. The

ability to make and break contacts with the environment grants mobility to hu-

manoids, at the expense of a delicate control problem and risks of high damages on

failures, that is to say, when falling. Understanding contact is therefore crucial to

design control laws or motion plans for these robots.

4.1 Contact

From the perspective of Lagrangian mechanics, contacts are additional mechanical

constraints between the robot and the environment. Kinematically, they can be de-

scribed as points whose relative positions are fixed, such as the tip of a foot hooked

to a point on the ground, or a flat foot surface immobile with respect to the floor.

Dynamically, this immobility translates as constraint forces (called contact forces in

this case) exchanged between the robot and the environment, and maintaining the

balance in the equations of motion.
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4.1.1 Contact modes

Kinematically, a contact binds the transform between a frame on an environment

surface and a frame on one of the robot’s links. In general, a kinematic transform

has three linear and three angular degrees of freedom (DOF), accounting in total

for six DOF. Contact amounts to constraining a certain subset of these DOFs by

equalities, where each new constraint yields a dual generalized force of the same

nature: binding a linear DOF yields a contact force, while binding an angular DOF

yields a contact torque. A combination of kinematic contact constraints is called

a contact mode (Balkcom and Trinkle, 2002). For instance, Figure 4.1 depicts the

point (sphere-to-plane) and full (surface-to-surface) contact modes.

f1
f2

f4

f3

f

environment surface

Fig. 4.1.: Two different contact modes. Left: a sphere-to-plane contact yields a point posi-
tional constraint: one point on the link coincides with one point on the surface.
This constraint binds the three linear DOF between the link frame and the envi-
ronment frame, resulting in a three-dimensional contact force. The three angu-
lar DOF are not constraint, thus there is no contact torque. Right: a surface-to-
surface contact yields a full positional constraint: the link and environment frame
coincide. All six relative DOF are constrained, resulting in a six-dimensional con-
tact wrench (force and torque).

In what follows, we will use only two contact modes: fixed and separated, i.e., ei-

ther the robot makes full surface contact with the environment (e.g., foot or hand

contact), or it makes no contact at all and the end-effector can move freely. Moving

in other contact modes such as sliding is possible, as demonstrated by humans, yet

out of the scope of our present study.

4.1.2 Friction model

Switching between contact modes can occur depending on the forces exerted by or

on the system. Consider the case of a block lay flat on a table: If an external operator
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Fig. 4.2.: Simple case of a block on table pushed by an external force fa.

applies a very small force fa along the x-axis, this force will be compensated by

friction and the block will not move. The system is in fixed contact mode. The

limits of this mode are described by Coulomb’s friction model: the fixed mode is

achieved as long as the contact force f c (= mg − fa in this example) lies inside

the friction cone |f cx| ≤ µf cz , where the static friction coefficient µ depends on the

nature of the two surfaces in contact.

When f c crosses the limits of this cone, the system switches to the sliding contact

mode, in which ẍ > 0 and the contact force obeys another frictional law f cx = −µ′f cz ,

with µ′ the kinetic friction coefficient.

Balkcom and Trinkle (2002) described how the Lagrangian duality between position

constraints and forces is reflected in contact modes: to each acceleration variable

corresponds a complementary force variable, and an equality constraint on one

systematically implies inequality constraints on the other. In the example above, ẍ

and f cx are complementary variables: either ẍ = 0 and |f cx| ≤ µf cz or ẍ > 0 and

f cx = −µ′f cz .

Definition 3. A friction model is a continuous description of the constraints

(equalities or inequalities) that apply to complementary variables in each contact

mode.

The Coulomb model described above is a complete friction model for our 2D exam-

ple. It generalizes to three dimensional bodies in contact. In what follows, we will

only consider the fixed contact mode.
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Definition 4 (Coulomb complementary condition). Consider the point contact

(Ci,ni), where ni indicates the surface normal at point Ci. In the fixed contact

mode, the contact force f ci applied at Ci must lie inside the friction cone directed

by ni:

f ci · ni > 0

‖ni × f ci × ni‖2 ≤ µi(f ci · ni),

where µi is the static friction coefficient at contact Ci.

The Euclidean norm ‖ · ‖2 in the definition above yields friction cones with circular

sections. Although the underlying assumption of isotropy is more realistic from a

physical point of view, linear approximations are usually considered in the literature

as they make computations more tractable (Qiu et al., 2011; Hauser, 2014; Del

Prete et al., 2015).

Definition 5 (Linearized Coulomb complementary condition). Consider the

point contact (Ci,ni), where ni indicates the surface normal at point Ci. In the

fixed contact mode, the contact force f ci applied at Ci must lie inside the linearized

friction cone directed by ni:

f ci · ni > 0

|f ci · ti| ≤ µi(f ci · ni),

|f ci · bi| ≤ µi(f ci · ni),

where µi is the static friction coefficient at contact Ci.

The approximation can be made conservative by taking the linearized cone inside

the circular one, as depicted in Figure 4.3.

68



Fig. 4.3.: Friction cone at the contact point Ci with local contact frame (ti, bi,ni), repre-
sented respectively alone (left), with the outer (middle) and inner (right) linear
approximations. (This figure is inspired from Fig. 1 in Trinkle et al. (1997).)

4.2 Cone duality

Linearized friction cones enable the use of a family of algorithms related to poly-

hedral convex cones. From now on, all the “cones” we mention will implicitly be

polyhedral.1

4.2.1 Weyl-Minkowski theorem

Let us recall a few fundamental definitions from computational geometry (Fukuda,

2000). The Minkowski sum of two sets P and Q is defined by

P +Q = {p+ q : p ∈ P and q ∈ Q}.

The convex hull of a set of points or vectors is conv(v1, . . . ,vn) =
∑
i αivi where

∀i, αi > 0 and
∑
i αi = 1. The positive span of a set of vectors is nonneg(r1, . . . , rs) =∑

i λiri where ∀i, λi > 0.

Theorem 3 (Minkowski-Weyl). For a subset P of Rd, the following statements

are equivalent:

1. P is a polyhedron: P = {x : Ax ≤ b} for A ∈ Rm×d and b ∈ Rm

2. There are finite real vectors v1,v2, . . . ,vn and r1, r2, . . . , rs in Rd such that

P = conv(v1,v2, . . . ,vn) + nonneg(r1, r2, . . . , rs).

1 A polyhedron is a geometric object with flat sides. Some authors use the word “polytope” to
denote such objects in arbitrary dimensions, while reserving the word “polyhedron” for the three-
dimensional case. A previous usage was to describe polyhedron as intersections of half-spaces
and polytopes as convex combinations of vertices (both being equivalent in the light of the Weyl-
Minkowski theorem). We make none of these distinctions in the present manuscript, and will use
the word “polyhedron” in its most general sense.
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Thus, every polyhedron has two representations of type (1) and (2), known as

(half-space) H-representation and (vertex) V-representation, respectively. Polyhe-

dral convex cones, such as linearized friction cones, are particular polyhedra. Note

that all matrix inequalities are to be taken component-wise.

Definition 6. A polyhedral convex cone C is defined by a set of inequalities C =

{x : u>1 x ≤ 0, . . . ,u>mx ≤ 0}, for a family of vectors (u1, . . . ,um). In matrix

from, C = {x : Ux ≤ 0}.

Corollary 1. For every polyhedral convex cone C, there exists a set of generators

(v1, . . . ,vn) such that C = {x =
∑n
i=1 λivi : λ1 ≥ 0 . . . λn ≥ 0}. In matrix form,

C = {x = Vλ,λ ≥ 0}.

Half-space and vertex representations have their own advantages. Checking whether

a vector x belongs to a cone is fast in H-representation (suffices to check each in-

equality), but it amounts to solve a Linear Program (LP) in V-representation. Mean-

while, the V-representation is compatible with linear combinations (suffices to apply

the mapping to each generator), but more involved in H-representation, as we will

see.

4.2.2 Double-description method

An important aspect of cone duality is the availability of an efficient algorithm to

convert between the half-space and vertex representations: the double-description

method (Fukuda and Prodon, 1996).

Given a matrix U corresponding to an H-representation, we will denote by UV the

associated vertex matrix, such that:

∀x ∈ Rd, Ux ≤ 0 ⇔ (∃λ ≥ 0, x = UV λ)

Similarly, given a matrix V corresponding to a V-representation, we will denote by

VH the associated half-space matrix, such that:

∀x ∈ Rd, (∃λ ≥ 0, x = Vλ) ⇔ VHx ≤ 0
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Both conversions ·H and ·V are performed by the double description method. In

our implementation, we used the cdd library by Fukuda and Prodon (1996).

4.2.3 Polyhedron projection

Projection is one of the operations that will be important to reduce sets of contact

forces. Suppose that we have a polyhedron P defined in H-representation by P =

{Ax ≤ b}, where x = (x1, x2, . . . , xr). The projection P ′ of P on the set of variables

x′ = (x1, x2, . . . , xr′), where r′ < r, is the set

P ′ =

x′ = (x1, x2, . . . , xr′), ∃x′′ = (xr′+1, . . . , xr), A

 x′

x′′

 ≤ b
 (4.1)

Informally, the two systems of linear inequalities P and P ′ have the same set of

solutions over the variables (x1, . . . , xr′). The figure below illustrates the simplest

example where a two-dimensional polygon is projected along the axes of a plane.

Fig. 4.4.: Projection of a 2D polygon by elimination of the x coordinate (red interval Py)
or of the y coordinate (blue interval Px).

4.2.4 Fourier-Motzkin elimination

The Fourier-Motzkin algorithm2 is a projection method that works exclusively in

H-representation. Its purpose is to eliminate variables in systems of inequalities by

a pivoting method similar to Gauss-Jordan elimination.

2 Named after a first sketch of it given by Fourier (1827) and a more recent formalization by Motzkin
(1952).
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To compute the projection P ′ from P, the algorithm proceeds by successive elim-

ination of individual variables. Let us consider the elimination of the variable xr,

and write a>i x ≤ bi the inequalities of P. The latter can be partitioned in three

distinct sets:

• lower bounds arxr ≥ bi −
∑
j<r aijxj with ar > 0, which we will write equiv-

alently xr ≥ bj(x1, . . . , xr−1) for j ∈ B;

• upper bounds arxr ≤ bi −
∑
j<r aijxj with ar > 0, which we will write equiv-

alently xr ≤ bj(x1, . . . , xr−1) for j ∈ B;

• inequalities in which xr does not appear (ar = 0), which we will denote by

bj(x1, . . . , xr−1) ≥ 0 for j ∈ B.

The polyhedron P can then be written:

∀(jl, ju) ∈ (B,B) bjl(x1, . . . , xr−1) ≤ xr ≤ bju(x1, . . . , xr−1)

∀j ∈ B 0 ≤ bj(x1, . . . , xr−1)

There exists a solution xr to this system if and only if all upper bounds are greater

than all lower bounds, and the projected polygon P ′ can then be written:

∀(jl, ju) ∈ (B,B) bjl(x1, . . . , xr−1) ≤ bju(x1, . . . , xr−1)

∀j ∈ B 0 ≤ bj(x1, . . . , xr−1)

We have thus derived an H-representation of the projected polygon. Note however

that the elimination step replaced |B|+|B| inequalities by |B|×|B| new ones, which

points out to one of the main drawbacks of this method: memory consumption is

doubly-exponential in the worst case.3

3 This case corresponds to |B| = 0 and |B| = |B| = m/2, where the number of inequalities

representing the system after k eliminations is O
(

(m/4)2k
)

.
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4.3 Surface contacts

4.3.1 Continuous shear and pressure distributions

When the contact occurs via a surface and not through a set of points, the phys-

ical reality of contact is continuous. To account for this continuity, we model the

action of the environment at the surface S by two quantities: a scalar field p(x, y)

corresponding to normal pressure, and a two-dimensional vector field σ(x, y) for

tangential mechanical stress. Figure 4.5-(A) illustrates these two fields for a rectan-

gular contact area. For convenience, we also will denote by ν := σ(x, y) +p(x, y)n,

where n is the unit vector normal to the contact surface (pointing upward). The

wrench resulting from ν(x, y) is

f c :=
∫
S
ν(x, y)dxdy, (4.2)

τ cO :=
∫
S

−−−→
OCxy × ν(x, y)dxdy, (4.3)

where O is the origin of the link frame. Note how the resulting torque in Equa-

tion (4.3) involves infinitesimal forces ν(x, y) but not infinitesimal torques (under

bounded forces, torques vanish when application points draw infinitely closer). In

other words, our model of surface contacts is a continuum of point contacts.

Accordingly, under Coulomb friction, the inequality constraints for ν(x, y) are p(x, y) >

0 and ‖σ(x, y)‖ ≤ µ p(x, y). In the present literature, surface contact is often mod-

eled using sets of contact points. In the light of a continuous model, the proposition

below gives a theoretical justification for this practice.

Proposition 4. Assume that the contact surface S is a convex polygon with ver-

tices C1, . . . , CN . If there exists a field (x, y) 7→ ν(x, y) satisfying unilaterality and

non-slippage conditions, then there exists contact forces applied at C1, . . . , CN ,

summing up to the same contact wrench, and satisfying Coulomb complementary

conditions (Definition 4).

Proof. Consider pressure and stress fields summing up to w. By convexity, one can

find barycentric coordinates α1(x, y), . . . , αk(x, y), i.e., positive functions such that
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environment surface

f1
f2 f4

f3

Fig. 4.5.: Contact in the surface plane. The physics of contact is a continuous distribu-
tion of stress and pressure fields (illustrated on the left). We show that, un-
der Coulomb friction, this distribution is equivalent (in terms of the resulting
wrench) to contact forces lying in frictions cones at the corners of the contact
polygon (right).

∑
i αi(x, y) = 1 and each point Cxy ∈ S can be written Cxy =

∑
i αi(x, y)Ci. Then,

define for each vertex Ci a force

fi :=
∫
S
αi(x, y)ν(x, y)dxdy,

By positivity of the αi’s, it is straightforward to check that all fni > 0 and ‖f ti ‖ ≤

µfni . In addition, this expression of fi ensures that the resulting wrenches are

equal.

If Dirac fields are authorized, then one can show that the converse implication of

Proposition 4 is true. If not, whether this converse implication is true remains an

open question. The bottom line of this argument is that the forces at the vertices of

the convex hull completely render the dynamics of the surface contact. The wrench

cone that we derive in the next section will share the same property.

4.3.2 Wrench cone for rectangular surfaces

While the wrench cone could be computed numerically for arbitrary contact surfaces

using the double-description method, the analytical formula that we will derive

using the Fourier-Motzkin-Imbert method gives even faster computations. Consider

a rectangular area with corners C1, C2, C3 and C4. We calculate the contact wrench

wc
O at a reference point O in the link frame. Let us denote by (fxi , f

y
i , f

z
i ) the three

components of the contact force f ci at the contact point Ci, expressed this time
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in the link frame. The following proposition gives the analytical formulae for the

wrench cone.

Proposition 5 (Contact Wrench Cone). The contact wrench wc
O = (f c, τO) can

by generated by contact forces (f c1 , . . . ,f c4) lying in their respective friction cones

if and only if it lies in the Contact Wrench Cone (CWC) defined by:

|fx| ≤ µfz (4.4)

|fy| ≤ µfz (4.5)

|τxO| ≤ Y fz (4.6)

|τyO| ≤ Xfz (4.7)

τ zmin ≤ τ zO ≤ τ zmax (4.8)

where τ zmin and τ zmax are defined by:

τ zmin := −µ(X + Y )fz + |Y fx − µτxO|+ |Xfy − µτ
y
O|,

τ zmax := +µ(X + Y )fz − |Y fx + µτxO| − |Xfy + µτyO|.

Furthermore, (4.8) does not contain any implicit constraint on fx, fy, fz, τxO or

τyO, as (4.4)–(4.7)⇒ τ zmin ≤ τ zmax.

Proof. The complete equality-inequality system is:

fx = fx1 + fx2 + fx3 + fx4 (4.9)

fy = fy1 + fy2 + fy3 + fy4 (4.10)

fz = fz1 + fz2 + fz3 + fz4 (4.11)

τxO = Y (fz1 − fz2 − fz3 + fz4 ) (4.12)

τyO = −X(fz1 + fz2 − fz3 − fz4 ) (4.13)

τ zO = X(fy1 + fy2 − f
y
3 − f

y
4 )− Y (fx1 − fx2 − fx3 + fx4 ) (4.14)

∀i, |fxi | ≤ µfzi (4.15)

∀i, |fyi | ≤ µfzi (4.16)

∀i, fzi > 0 (4.17)
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The positivity of all fzi > 0 implies that fz > 0 by positive combination, so we can

normalize the resultant force into:

K1 := fx

µfz
, K2 := fy

µfz
, K3 := τ zO

µ(X + Y )fz .

And similarly for the resultant moment:

C1 := τxO
Y fz

, C2 := τyO
Xfz

.

Contact force variables are themselves normalized into:

αxi := fxi
µfzi

, αyi := fyi
µfzi

, βzi := fzi
fz1 + fz2 + fz3 + fz4

.

Dividing each row of the initial system by fz, we get:

1 = βz1 + βz2 + βz3 + βz4 (4.18)

C1 = βz1 − βz2 − βz3 + βz4 (4.19)

C2 = −βz1 − βz2 + βz3 + βz4 (4.20)

K1 = αx1 + αx2 + αx3 + αx4 (4.21)

K2 = αy1 + αy2 + αy3 + αy4 (4.22)

K3 = px(αy1βz1 + αy2β
z
2 − α

y
3β

z
3 − α

y
4β

z
4)

−py(αx1βz1 − αx2βz2 − αx3βz3 + αx4β
z
4) (4.23)

∀i, |αxi | ≤ 1 (4.24)

∀i, |αyi | ≤ 1 (4.25)

∀i, βzi > 0 (4.26)

where px := X

X + Y
and py := Y

X + Y
.

Rewriting of αi’s. Let us introduce the new variables:

γx = αx1β
z
1 + αx4β

z
4 , γ′x = αx2β

z
2 + αx3β

z
3 ,

γy = αy1β
z
1 + αy2β

z
2 , γ′y = αy3β

z
3 + αy4β

z
4 .

Note that the vector β is a convex combination, i.e., βzi > 0 and
∑
i β

z
i = 1. As a

consequence, the mapping M(β) from α to γ is a linear surjection from [−1, 1]8
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to Sγ = {|γx|yi | ≤ βzj + βzk}, and α ∈ [−1, 1]8 if and only if γ ∈ Sγ . Using Equa-

tions (4.18)-(4.20), we can rewrite Sγ as:

2|γx| ≤ 1 + C1, 2|γ′x| ≤ 1− C1,

2|γy| ≤ 1− C2, 2|γ′y| ≤ 1 + C2.

Elimination of βi’s. Next, we reduce Equations (4.18)-(4.20) by rewriting βz1 , β
z
2

and βz3 as functions of βz4 . The positivity inequalities ∀i, βzi ≥ 0 thus:

−1 + C1 ≤ 2βz4 ≤ 1 + C1

C1 + C2 ≤ 2βz4 ≤ 2 + C1 + C2

−1 + C2 ≤ 2βz4 ≤ 1 + C2

0 ≤ 2βz4 ≤ 2

The complete system is now:

K1 = γx + γ′x (4.27)

K2 = γy + γ′y (4.28)

K3 = px(γy − γ′y)− py(γx − γ′x) (4.29)

2|γx| ≤ 1 + C1 (4.30)

2|γ′x| ≤ 1− C1 (4.31)

2|γy| ≤ 1− C2 (4.32)

2|γ′y| ≤ 1 + C2 (4.33)

2βz4 ≤ 1 + C1 (4.34)

2βz4 ≤ 2 + C1 + C2 (4.35)

2βz4 ≤ 1 + C2 (4.36)

2βz4 ≤ 2 (4.37)

2βz4 ≥ −1 + C1 (4.38)

2βz4 ≥ C1 + C2 (4.39)

2βz4 ≥ −1 + C2 (4.40)

2βz4 ≥ 0 (4.41)
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We apply Fourier-Motzkin elimination to βz4 : matching all pairs of lower and upper

bounds for this variable yields C1 ∈ [−1, 1] and C2 ∈ [−1, 1], so that the complete

system is:

K1 = γx + γ′x (4.42)

K2 = γy + γ′y (4.43)

K3 = px(γy − γ′y)− py(γx − γ′x) (4.44)

2|γx| ≤ 1 + C1 (4.45)

2|γ′x| ≤ 1− C1 (4.46)

2|γy| ≤ 1− C2 (4.47)

2|γ′y| ≤ 1 + C2 (4.48)

C1 ∈ [−1, 1] (4.49)

C2 ∈ [−1, 1] (4.50)

Elimination of γ’s. We follow the same procedure as above, first expressing all

γ’s as functions of γx, which yields:

2pyγx ≤ py(1 + C1) (4.51)

2pyγx ≤ py(1− C1) + 2pyK1 (4.52)

2pyγx ≤ px(1− C2)−K3 + pyK1 − pxK2 (4.53)

2pyγx ≤ px(1 + C2)−K3 + pyK1 + pxK2 (4.54)

2pyγx ≥ −py(1 + C1) (4.55)

2pyγx ≥ −py(1− C1) + 2pyK1 (4.56)

2pyγx ≥ −px(1− C2)−K3 + pyK1 − pxK2 (4.57)

2pyγx ≥ −px(1 + C2)−K3 + pyK1 + pxK2 (4.58)

Applying Fourier-Motzkin elimination to γx, one can check that matching all pairs

of lower bounds (4.55)-(4.58) and upper bounds (4.51)-(4.54) yields:

• (4.55) ≤ (4.51)⇔ C1 ≥ −1

• (4.55) ≤ (4.52)⇔ K1 ≥ −1

• (4.55) ≤ (4.53)⇔ K3 − pyK1 + pxK2 − pyC1 + pxC2 ≤ 1

• (4.55) ≤ (4.54)⇔ K3 − pyK1 − pxK2 − pyC1 − pxC2 ≤ 1
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• (4.56) ≤ (4.51)⇔ K1 ≤ 1

• (4.56) ≤ (4.52)⇔ C1 ≤ 1

• (4.56) ≤ (4.53)⇔ K3 + pyK1 + pxK2 + pyC1 + pxC2 ≤ 1

• (4.56) ≤ (4.54)⇔ K3 + pyK1 − pxK2 + pyC1 − pxC2 ≤ 1

• (4.57) ≤ (4.51)⇔ −K3 + pyK1 − pxK2 − pyC1 + pxC2 ≤ 1

• (4.57) ≤ (4.52)⇔ −K3 − pyK1 − pxK2 + pyC1 + pxC2 ≤ 1

• (4.57) ≤ (4.53)⇔ C2 ≤ 1

• (4.57) ≤ (4.54)⇔ K2 ≥ −1

• (4.58) ≤ (4.51)⇔ −K3 + pyK1 + pxK2 − pyC1 − pxC2 ≤ 1

• (4.58) ≤ (4.52)⇔ −K3 − pyK1 + pxK2 + pyC1 − pxC2 ≤ 1

• (4.58) ≤ (4.53)⇔ K2 ≤ 1

• (4.58) ≤ (4.54)⇔ C2 ≥ −1

Consequently, the complete system is now:

K3 ≤ 1− pyK1 − pxK2 − pyC1 − pxC2

K3 ≤ 1− pyK1 + pxK2 − pyC1 + pxC2

K3 ≤ 1 + pyK1 − pxK2 + pyC1 − pxC2

K3 ≤ 1 + pyK1 + pxK2 + pyC1 + pxC2

K3 ≥ −1 + pyK1 + pxK2 − pyC1 − pxC2

K3 ≥ −1 + pyK1 − pxK2 − pyC1 + pxC2

K3 ≥ −1− pyK1 + pxK2 + pyC1 − pxC2

K3 ≥ −1− pyK1 − pxK2 + pyC1 + pxC2

C1 ∈ [−1, 1]

C2 ∈ [−1, 1]

K1 ∈ [−1, 1]

C2 ∈ [−1, 1]

In a more concise form, these inequalities can be written

K3 ≥ −1 + py|K1 − C1|+ px|K2 − C2|,

K3 ≤ +1− py|K1 + C1| − px|K2 + C2|.
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The inequalities (4.4)–(4.8) follow from de-normalizing all inequalities. The last

claim on the absence of implicit constraint in (4.8) can be seen by applying Fourier-

Motzkin elimination to K3:

py(|K1 − C1|+ |K1 + C1|) + px(|K2 − C2|+ |K2 + C2|) ≤ 2

py max(|K1|, |C1|) + px max(|K2|, |C2|) ≤ 1,

which is always true since (px, py) ∈ [−1, 1]2.

Let us now detail the structure of the Contact Wrench Cone.

• The first two inequalities (4.4)-(4.5) correspond to the Coulomb friction model

applied to the resultant contact force. (Note how 4.6 and 4.7 naturally imply

that fz > 0.)

• Inequalities (4.6) and (4.7) are equivalent to having the Center Of Pressure

(COP) lie inside of the support polygon.

• The last inequality (4.8) provides a bound on the resultant yaw torque, which

was implicitly encoded in the contact-force model.

Observe how the latter relation is more complex than “no rotation occurs while τ zO
is small enough”, as it is coupled with all other components of the contact wrench.

The yaw torque is bounded by τ zmin and τ zmax, both of which may be either positive

or negative (for instance, both become negative when the COP nears the corner

τ=
OY f

z, τyO = Xfz of the support polygon). Notably, the “safest” value for τ zO is not

zero but:

τsafe := τ zmin + τ zmax
2

= sgn(−fxτxO) min(Y |fx|, µ|τxO|) + sgn(−fyτyO) min(X|fy|, µ|τyO|),

with sgn the sign function. From Equation (4.8), τ zO may deviate from τsafe by at

most

µ(X + Y )fz −max(Y |fx|, µ|τxO|)−max(X|fy|, µ|τyO|).

We see from this rewriting that higher tangential forces or roll-pitch torques reduce

the range of admissible yaw torques. In particular, when these other constraints are
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saturated (e.g., when the COP reaches a corner of the support polygon), τsafe is the

only solution that prevents the contact from breaking. Therefore, τ zO = τsafe appears

as a sensible control law to prevent undesired yaw rotations.

4.3.3 Yaw moment at the center of pressure

Additional insights appear when considering the yaw constraint (4.8) at the COP

rather than the center O of the rectangular surface. The plane coordinates of the

center of pressure C are given by

xC = −τyO
fz

, yC = τxO
fz
.

The yaw moment at the COP is τ zC = τ zO − xCfy + yCf
x so that

τ zO = τ zC −
τyO
fz
fy − τxO

fz
fx.

The inequality τ zO ≥ τ zmin becomes τ zC ≥ mz
min with

mz
min =

(
−µXfz + |Xfy − µτyO|+

τyO
fz
fy
)

+
(
−µY fz + |Y fx − µτxO|+

τxO
fz
fx
)

= max

 (+X − xC)(fy − µfz)

(−X − xC)(fy + µfz)
+ max

 −(−Y − yC)(fx − µfz)

−(+Y − yC)(fx + µfz)

= −µfz(X + Y − |xC | − |yC |) + max



(+X − xC)fy − (+Y − yC)fx

(+X − xC)fy − (−Y − yC)fx

(−X − xC)fy − (+Y − yC)fx

(−X − xC)fy − (−Y − yC)fx

= −µfz(X + Y − |xC | − |yC |) + 4max
i=1

−−→
CCi × ft

Similarly, τ zO ≤ τ zmax becomes τ zC ≤ mz
max with

mz
max = max

 (+X − xC)(µfz + fy)

(−X − xC)(fy − µfz)
+ max

 −(+Y − yC)(fx − µfz)

−(−Y − yC)(fx + µfz)

= µfz(X + Y − |xC | − |yC |) + max



(+X − xC)fy − (+Y − yC)fx

(+X − xC)fy − (−Y − yC)fx

(−X − xC)fy − (+Y − yC)fx

(−X − xC)fy − (−Y − yC)fx
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= µfz(X + Y − |xC | − |yC |) + 4max
i=1

−−→
CCi × ft

It appears from these two equations that the safest value for the moment exerted

by contact forces at the COP is

τ zC,safe = mz
min +mz

max
2 = 4max

i=1

−−→
CCi × ft,

i.e., the moment exerted at the COP by applying the resultant friction force stress at

the vertices of the contact polygon. It is yet unclear to us how this simple expression,

which was naturally embedded in the expression of the wrench cone, could be

derived from physical considerations.

τ zC,safe = |Xfy − µxCfz|+ |Y fx − µyCfz|.

Meanwhile, the vertical moment τ zC at the COP may deviate from the reference

value τ zC,safe by at most

µ fz dvert(xC , yC),

where dvert(xC , yC) := (X+Y −|xC |−|yC |) is the (norm-1) distance4 from the COP

to the nearest vertex of the support area. It is indeed sensible that a higher friction

coefficient, more contact pressure or a COP closer to the center of the support area

will reduce the chances of yaw rotations. Within our analysis, we have identified

that they are the only factors to be accounted for under Coulomb friction.

4.4 Application to single-support contact phases

In this section, we consider the case of a humanoid making a single foot contact

with a horizontal floor.

4.4.1 Expression of the CWC as ZMP support polygon

All coordinates being expressed within the contacting link’s reference frame, the

z-axis of which is vertical, we denote by pG = (xG, yG, zG) and pZ = (xZ , yZ , 0)

the coordinates of the robot’s Center Of Mass (COM) G and ZMP Z. The ZMP and

4 Remember that we have linearized friction cones, which corresponds to an exchange of the `2

(Euclidean) for the `1 norm.

82



COP coincide when all contacts occur with the same contact surface (Sardain and

Bessonnet, 2004), so that the formulae derived in the previous section apply to Z.

Following common practice, we use the ZMP as a whole-body quantity and centers

of pressure as local contact quantities, although both refer to the same in single

contact.

In dynamic equilibrium, the resultant of contact forces “balances” (is equal to the

opposite of) the resultant of gravity and inertial forces (a proper introduction to

this law will be given in Chapter 5). The resultant of contact forces is then

fx = −mẍG (4.59)

fy = −mÿG (4.60)

fz = m(g − z̈G), (4.61)

with m the total mass of the robot and g > 0 the gravity constant. The Contact

Wrench Cone can be rewritten as:

|ẍG| ≤ µ(z̈G + g) (4.62)

|ÿG| ≤ µ(z̈G + g) (4.63)

|xZ | ≤ X (4.64)

|yZ | ≤ Y (4.65)

τ zmin ≤ τ zO ≤ τ zmax (4.66)

We make the assumption that there is no angular momentum acting on the system–

or, equivalently, that the angular momentum is regulated to zero–which corre-

sponds to the Linear Pendulum assumption (a more detailed discussion of this point

will be given in Chapter 6). The ZMP is defined by the following equations (see e.g.

Sugihara et al., 2002):

ẍG = (xG − xZ) z̈G + g

zG
(4.67)

ÿG = (yG − yZ) z̈G + g

zG
(4.68)
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Using Equations (4.67)-(4.68), one can rewrite the non-slippage conditions (4.62)-

(4.63) as:

|xG − xZ | ≤ µzG

|yG − yZ | ≤ µzG

z̈G > −g

Next, consider the yaw inequality. The vertical moment at the ZMP is the same as

that at the COM, as the assumption that L̇xG = L̇yG = 0 amounts to say that the COM

is on the non-central axis of the ZMP (Sardain and Bessonnet, 2004):

τ zZ = τ zG + (−→ZG× f) · eZ

= 0 + (xG − xZ)fy − (yG − yZ)fx

= −(xG − xZ)mÿG + (yG − yZ)mẍG

= 0.

The condition (4.8), which is equivalent to mz
min ≤ τ zZ ≤ mz

max, can now be ex-

pressed as mz
min ≤ 0 ≤ mz

max, that is

4max
i=1
|
−−→
ZCi × ft| ≤ µfzdvert.

From (4.59)-(4.61), this expands to:

∣∣∣∣∣∣
 +X − xZ

+Y − yZ

×
 ẍG

ÿG

∣∣∣∣∣∣ ≤ µ(z̈G + g)dvert

∣∣∣∣∣∣
 +X − xZ
−Y − yZ

×
 ẍG

ÿG

∣∣∣∣∣∣ ≤ µ(z̈G + g)dvert

∣∣∣∣∣∣
 −X − xZ

+Y − yZ

×
 ẍG

ÿG

∣∣∣∣∣∣ ≤ µ(z̈G + g)dvert

∣∣∣∣∣∣
 −X − xZ
−Y − yZ

×
 ẍG

ÿG

∣∣∣∣∣∣ ≤ µ(z̈G + g)dvert.

Which is then, from (4.67)-(4.68):

∣∣∣∣∣∣
 +X − xZ

+Y − yZ

×
 xG − xZ

yG − yZ

∣∣∣∣∣∣ ≤ µzGdvert
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∣∣∣∣∣∣
 +X − xZ
−Y − yZ

×
 xG − xZ

yG − yZ

∣∣∣∣∣∣ ≤ µzGdvert

∣∣∣∣∣∣
 −X − xZ

+Y − yZ

×
 xG − xZ

yG − yZ

∣∣∣∣∣∣ ≤ µzGdvert

∣∣∣∣∣∣
 −X − xZ
−Y − yZ

×
 xG − xZ

yG − yZ

∣∣∣∣∣∣ ≤ µzGdvert

Expanding all absolute values, the complete H-representation of the ZMP support

polygon can finally be calculated (Figure 4.6). In a concise (hypercube) form, this

system can also be written:

ζ1(ζ3Y − yG)xZ − ζ1(ζ2X − xG)yZ + ζ1(ζ2XyG − ζ3Y xG) ≤ µzG(X + Y − |xZ | − |yZ |)

where (ζ1, ζ2, ζ3) ∈ {−1,+1}3. This polygon takes into account all of the wrench

cone constraints except unilaterality of contact, i.e., fz > 0 ⇔ z̈G ≥ −g, which

ought to be checked separately if needed. In ZMP controllers, the altitude zG of the

COM is usually assumed to be constant, so that the system is regulated around the

zero-dynamics of z̈G = 0.

Figure 4.7 shows the ZMP polygon computed when the COM height is zG = 0.8 m

and the friction coefficient µ = 0.1 is low (this value corresponds e.g., to metal-on-

ice contacts). We see that the actual support polygon for the ZMP to keep a stable

contact is not the complete contact surface, but a small region extending from the

COM to the foot center, which shows that:

Property 2. The support area S of the ZMP is not the Convex Hull of Contact

Points (CHCP). Although it is true that S ⊂ CHCP, the inclusion becomes strict for

e.g., low COM altitudes zG or at small friction µ.

We will discuss this phenomenon in more detail in Chapter 6 (in particular in Sec-

tion 6.4.2).
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+ xZ ≤ X
− xZ ≤ X
+ xZ ≤ µzG + xG
− xZ ≤ µzG − xG

+ yZ ≤ Y
− yZ ≤ Y
+ yZ ≤ µzG + yG
− yZ ≤ µzG − yG

(+Y − yG + 1) xZ −(+X − xG + 1) yZ ≤ µzG(X + Y )− (+XyG − Y xG)
(+Y − yG + 1) xZ −(−X − xG + 1) yZ ≤ µzG(X + Y )− (−XyG − Y xG)
(−Y − yG + 1) xZ −(+X − xG + 1) yZ ≤ µzG(X + Y )− (+XyG + Y xG)
(−Y − yG + 1) xZ −(−X − xG + 1) yZ ≤ µzG(X + Y )− (−XyG + Y xG)
(+Y − yG − 1) xZ −(+X − xG + 1) yZ ≤ µzG(X + Y )− (+XyG − Y xG)
(+Y − yG − 1) xZ −(−X − xG + 1) yZ ≤ µzG(X + Y )− (−XyG − Y xG)
(−Y − yG − 1) xZ −(+X − xG + 1) yZ ≤ µzG(X + Y )− (+XyG + Y xG)
(−Y − yG − 1) xZ −(−X − xG + 1) yZ ≤ µzG(X + Y )− (−XyG + Y xG)
(+Y − yG + 1) xZ −(+X − xG − 1) yZ ≤ µzG(X + Y )− (+XyG − Y xG)
(+Y − yG + 1) xZ −(−X − xG − 1) yZ ≤ µzG(X + Y )− (−XyG − Y xG)
(−Y − yG + 1) xZ −(+X − xG − 1) yZ ≤ µzG(X + Y )− (+XyG + Y xG)
(−Y − yG + 1) xZ −(−X − xG − 1) yZ ≤ µzG(X + Y )− (−XyG + Y xG)
(+Y − yG − 1) xZ −(+X − xG − 1) yZ ≤ µzG(X + Y )− (+XyG − Y xG)
(+Y − yG − 1) xZ −(−X − xG − 1) yZ ≤ µzG(X + Y )− (−XyG − Y xG)
(−Y − yG − 1) xZ −(+X − xG − 1) yZ ≤ µzG(X + Y )− (+XyG + Y xG)
(−Y − yG − 1) xZ −(−X − xG − 1) yZ ≤ µzG(X + Y )− (−XyG + Y xG)
−(+Y − yG + 1) xZ (+X − xG + 1) yZ ≤ µzG(X + Y ) + (+XyG − Y xG)
−(+Y − yG + 1) xZ (−X − xG + 1) yZ ≤ µzG(X + Y ) + (−XyG − Y xG)
−(−Y − yG + 1) xZ (+X − xG + 1) yZ ≤ µzG(X + Y ) + (+XyG + Y xG)
−(−Y − yG + 1) xZ (−X − xG + 1) yZ ≤ µzG(X + Y ) + (−XyG + Y xG)
−(+Y − yG − 1) xZ (+X − xG + 1) yZ ≤ µzG(X + Y ) + (+XyG − Y xG)
−(+Y − yG − 1) xZ (−X − xG + 1) yZ ≤ µzG(X + Y ) + (−XyG − Y xG)
−(−Y − yG − 1) xZ (+X − xG + 1) yZ ≤ µzG(X + Y ) + (+XyG + Y xG)
−(−Y − yG − 1) xZ (−X − xG + 1) yZ ≤ µzG(X + Y ) + (−XyG + Y xG)
−(+Y − yG + 1) xZ (+X − xG − 1) yZ ≤ µzG(X + Y ) + (+XyG − Y xG)
−(+Y − yG + 1) xZ (−X − xG − 1) yZ ≤ µzG(X + Y ) + (−XyG − Y xG)
−(−Y − yG + 1) xZ (+X − xG − 1) yZ ≤ µzG(X + Y ) + (+XyG + Y xG)
−(−Y − yG + 1) xZ (−X − xG − 1) yZ ≤ µzG(X + Y ) + (−XyG + Y xG)
−(+Y − yG − 1) xZ (+X − xG − 1) yZ ≤ µzG(X + Y ) + (+XyG − Y xG)
−(+Y − yG − 1) xZ (−X − xG − 1) yZ ≤ µzG(X + Y ) + (−XyG − Y xG)
−(−Y − yG − 1) xZ (+X − xG − 1) yZ ≤ µzG(X + Y ) + (+XyG + Y xG)
−(−Y − yG − 1) xZ (−X − xG − 1) yZ ≤ µzG(X + Y ) + (−XyG + Y xG)

Fig. 4.6.: Complete expression of the ZMP support polygon, accounting for the complete
contact stability condition (i.e., taking into account not only roll and pitch, as is
usually done, but also slippage and yaw rotations). Most of these inequalities are
redundant and can be eliminated once the position of the COM is determined.
However, in the general case any of them can be saturated.
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COM

ZMP Area

Contact Surface

Fig. 4.7.: ZMP support area (in green) for the complete contact stability condition, i.e., tak-
ing into account translational and rotational friction. The foot dimensions are
that of HRP-4. The area was computed for a static friction coefficient µ = 0.1
(icy surface) and a COM height of 0.8 m. The polygon has eight edges; the other
thirty-two inequalities of the complete system (Figure 4.6) could be eliminated
once the position of the COM (red disc) was determined.

4.4.2 Experimental validation

We tested the validity of the CWC as a stability conditions via dynamics simulations

in OpenHRP5 with our model of the HRP4 humanoid robot (Kaneko et al., 2011).

Note that OpenHRP performs its own physics simulations for contact, as described

in (Kanehiro et al., 2004), i.e., it has its own model for simulating what contact

forces the environment will choose inside friction cones. Our criterion is indepen-

dent from this choice, as stability is enforced at the cone level rather than relying

on individual contact forces.

We use TOPP (see Chapter 3) to enforce the CWC condition. In this experiment, we

consider a single contact made by the left foot and design a motion that challenges

all six contact DOFs. Remember that the contact wrench is fully determined by the

unactuated rows of the equation of motion in single contact (Wieber, 2006). First,

we described by hand a set of eleven key postures. A geometric path connecting

them was obtained by interpolating Bezier curves between these postures and us-

ing inverse kinematics to fix the position and orientation of the support foot on the

ground. Then, we retimed the path into a suitable trajectory by TOPP. As is com-

mon with numerical TOPP implementations, we added safety margins to constraint

5 https://github.com/fkanehiro/openhrp3
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inequalities: the foot dimensions X and Y were scaled by 70% and the friction

coefficient set to µ = 0.4 (while the actual value was set to µ = 0.8 in OpenHRP).

Figure 4.8 shows a time-lapse of the final retimed motion. Because time optimality

yields bang-bang control laws, the retimed motion always saturates at least one

of the contact constraints. Therefore, trying to execute it faster should result in

the end-effector breaking surface contact, e.g., tipping on the edge of the foot. We

observed this phenomenon in the experiment, as illustrated by Figure 4.9. Note

that, as we used HRP4’s stabilizer while executing the motion, it was still possible

in practice to accelerate the motion by about 5%6 without observing any change in

the foot contact condition.

Implementation. The source code of this experiment is publicly available at

https://github.com/stephane-caron/icra-2015

Conclusion

We have reviewed the physics of contact, as well as techniques from computational

geometry that are of particular interest to deal with stability conditions. We then

derived the analytical formulation of the complementary condition for a contact

wrench, the Contact Wrench Cone. To the best of our knowledge, this is the first

time that an analytical formula is derived for the friction wrench cone, which is

crucial to eliminate the redundancy that appears when considering multiple contact

points. We also saw that this formula implies a closed-form expression of the COP-

ZMP support polygon, which can be smaller than the convex hull of contact points

in practice.

6 That is to say by reducing the total duration by 5% using uniform time scaling.
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5
Multi-contact stability

In this chapter, we review the fundamentals of whole-body dynamics before pro-

viding our own derivation of a general multi-contact stability criterion, namely the

gravito-inertial wrench cone. We then show how to apply this criterion to static and

dynamic equilibrium problems. In particular, we show how to express it within the

framework of TOPP, which advances our plan for integration with a fast kinody-

namic motion planner.

5.1 Whole-body dynamics

Suppose that our robot makesN point contacts with the environment atC1, . . . , CN .

The translation Jacobian JCj calculated at the contact point Cj is defined by

JCj :=
∂pCj
∂q

,

so that JCj q̇ = ṗCj . (Note that all our coordinate vectors p· are defined with respect

to the inertial frame.) The equations of motion of the robot are (see e.g. Wieber,

2006):
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Property 3 (Equations of motion under point contact constraints). For the robot

making point or surface (Proposition 4) contacts with the environment repre-

sented contact points {C1, . . . , CN}, the equations of motion can be written:

M(q)q̈ + fgi(q, q̇) = S>τ +
N∑
j=1

J>Cjf
c
j , (5.1)

where q, q̇, q̈ are the n-dimensional vectors of DOF values, velocities and acceler-

ations, M(q) is the n× n joint-inertia matrix, fgi(q, q̇) the n-dimensional vector

of gravity and Coriolis forces. In case the robot has na actuated joints, τ is the

na-dimensional vector of torques at the actuated joints and S is the na × n joint

selection matrix. Finally, for each j ∈ {1, . . . , N}, f cj is a 3-dimensional vector of

contact force and JCj is the 3× n translation Jacobian calculated at point Ci.

As discussed in the previous Chapter, all contact forces on a link can be uniquely

described by a contact wrench. This property transfers to the equations of motion

under proper definition of jacobian matrices.

Let J rot
i denote the rotation Jacobian for the link i, characterized by the property

Jrot
i q̇ = ωi,

where ωi denotes the angular velocity of the link. Note that both translation and ro-

tation jacobians are readily available in forward kinematics software. For instance,

they correspond to the function prototypes ComputeJacobianTranslation(link,

point) and ComputeJacobianAxisAngle(link) in OpenRAVE.

Property 4. The equations of motion can be equivalently written as:

M(q)q̈ + fgi(q, q̇) = S>τ +
∑

contact i
Jwi >wc

i . (5.2)

where wc
i denotes the contact wrench taken with respect to a single contact point

Ci on link i, and Jwi = [J>Ci Jrot,>
i ]> denotes the 6×n matrix obtained by stacking

vertically the translation and rotation jacobians.
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Proof. Let us denote by wc
i = (f ci , τi) the contact wrench exerted on link i and

taken at a reference contact point Ci.

f ci :=
∑
j

f cij ,

τi :=
∑
j

−−−→
CiCij × f cij .

The definition of the rotation Jacobian implies that, for any point C on the link and

any vector u, one has

∂
−−→
CiC

∂q

>

u = J>rot

(−−→
CiC × u

)
.

The position of a contact point Cij can be expressed as pCij = pCi +−−−→CiCij . Differ-

entiating with respect to q yields:

JCij = JCi + ∂
−−−→
CiCij
∂q∑

i

J>Cijf
c
i =

∑
i

J>Cif
c
i + ∂

−−−→
CiCij
∂q

>

f ci

= J>Ci
∑
i

f ci +
∑
j

Jrot
i
> (−−−→

CiCij × f cij
)
.

Combining the two properties above, we finally have that
∑
i J>Cijf

c
i = Jwi >wc

i .

5.1.1 Dynamic equilibrium

For a given link i (this time not necessarily a contacting link), we write

• mi and Gi its mass and COM, respectively;

• Ri its orientation matrix in the absolute frame;

• ω`i its angular velocity in the link frame;

• I`i its inertia matrix in the link frame.

The linear momentum P and angular momentum LG of the system, taken at the

COM G, are defined by:

P := 1
m

∑
link k

miṗGi , (5.3)
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LG :=
∑
link i

mi
−−→
GGi × ṗGi + RiI`iω`i . (5.4)

The dynamic wrench of the robot at G is the wrench (Ṗ, L̇G). It is a purely kine-

matic object that can be computed by forward kinematics (differentiating the two

equations above) from joint-angle positions, velocities and accelerations.

The fundamental principle of dynamics states that the dynamic wrench of the robot

is equal to the total wrench of forces acting on the system, that is

 Ṗ

L̇G

 =

 fg
0

 +
∑

contact i

 f ci
−−→
GCi × f ci

 , (5.5)

where fg denotes the gravity force and f ci is the contact force exerted by the en-

vironment on the robot at Ci. This equation is also called dynamic balance or the

dynamic equilibrium of the system. It can be derived from Gauss’s principle of least

constraint (equivalently, from d’Alembert’s principle) and corresponds to the six

unactuated components in the equations of motion of the system (robot + environ-

ment) (Wieber, 2006).

5.1.2 Dynamic wrenches

The Gravito-Inertial Wrench (GIW) wgi, considered with respect to a fixed point O

(not necessarily the origin of the world frame), is defined by:

wgi
O :=

 fgi
τ giO

 :=

 fg − Ṗ
−−→
OG× (fg − Ṗ)− L̇G

 . (5.6)

Meanwhile, the contact wrench wc is defined as:

wc
O :=

 f c
τ cO

 :=
∑

contact i

 f ci
−−→
OCi × f ci

 (5.7)

Dynamic equilibrium (5.5) can then be written as

wgi +wc = 0. (5.8)
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The rationale behind this wrench-space formulation is that the gravito-inertial de-

scribes the motion of the overall system while the contact wrench describes its

interactions with the environment.

5.1.3 Contact stability

We saw in Chapter 4 how accelerations and forces are in a complementary re-

lationship. However, complementary variables are not equivalent from a control

perspective: accelerations are controlled by the robot, while forces are chosen by

the environment.1 Pang and Trinkle (2000) have defined two notions of contact

stability that abstract the intervention of the environment and focus on the choice

of the robot. At the whole-body level, this notion translates as follows.

Definition 7 (Weak Contact Stability). A contact is weakly stable when there

exists a solution (q̈, τ ,w1, . . . ,wN ) of the equations of motion satisfying the fixed

contact mode for all contacting links. That is to say,

• there is no relative motion at any contact i: Jwi q̇ = 0 and Jwi q̈ = −J̇wi q̇,

• actuated torques τ are within torque limits: |τ | ≤ τmax

• contact wrenches wc
1, . . . ,w

c
N lie in their respective contact wrench cones.

This formulation has been widely used in the literature. In approaches based on

inverse dynamics, the first condition is first enforced kinematically, then torques

and complementary forces are solved (Hauser, 2014; Righetti et al., 2013). The

“weakness” in the definition above refers to the notions of strong and weak stability

stated by Pang and Trinkle (2000). Strong stability happens when all solutions to

the equations of motion satisfy the fixed contact mode. In what follows, we will

always refer to contact stability in the weak sense.

Remember that the image of a polyhedral convex cone by a linear mapping is itself a

polyhedral convex cone (c.f. Section 4.2). Thus, as all local contact wrenches {wc
i}

1 From a game theoretical perspective, robot and environment are two players of a game. The
strategy of the robot, i.e., selecting joint accelerations, reduces the choices that the environment
can make in the current contact mode. For instance, an acceleration of the center of mass binds
contact forces via the relation

∑
i
fci = m(g − p̈G).
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lie in wrench cones, the whole-body wrench cone wc must lie in the (whole-body)

contact wrench cone C resulting from the linear mapping:

wc
O =

∑
i

wc
i,O.

We will call C the CWC for short. Since the gravito-inertial and contact wrenches

are simply opposites (5.8), the gravito-inertial wrench wgi
O also lies in a cone −C,

which is called the GIWC. In terms of whole-body dynamics, the notion of weak

contact stability can be equivalently stated as:

Proposition 6 (Weak Contact Stability). A motion of the robot is (weak-contact)

stable if and only if the contact wrench (resp. gravito-inertial wrench) it generates

belongs to the CWC (resp. GIWC).

We will also say that a motion is dynamically stable when it satisfies weak contact

stability.

5.2 Motivation for wrench reduction

Let us first consider the approach that consists in applying TOPP directly to hu-

manoid trajectory optimization. It is e.g., the approach followed by Suleiman et al.

(2010), in which the authors took into account balance and sliding constraints, but

not the actuation redundancy that arises in double support configurations. Mean-

while, Hauser (2014) dealt with both actuator limits and frictional contacts, using a

polytope projection algorithm to deal with internal force redundancy. In both cases,

redundancy was the object of a special treatment, namely avoided or projected.

As introduced in Chapter 3, TOPP computes a mapping s(t) from an the index s

of an original path q(s) to the reparameterized time t. We will denote by qs and

qss (resp. q̇ and q̈) the derivatives with respect to the path variable s (resp. to the

reparameterized time t). The two pairs are linked by the chain-rule:

q̇ = ṡqs,

q̈ = s̈qs + ṡ2qs.
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As a consequence, constraints expressed as functions of (q, q̇, q̈) can be written

equivalently as functions of the path derivatives (s, ṡ, s̈).

Three types of constraints usually considered for humanoids: maintaining the ZMP

inside its support polygon, as discussed in the previous Chapter, frictional contact

(Definitions 4-5) and torque limits |τmax| ≤ τmax. All three types of constraints boil

down to a relation f(s, ṡ, s̈) ≤ 0. We will show how each of them can be further

factorized in:

s̈a(s) + ṡ2b(s) + c(s) ≤ 0, (5.9)

which is the input format for TOPP (c.f. Chapter 3). With the ability to compute

vectors (a(s), b(s), c(s)) at each index s ∈ [0, Tref] of the reference trajectory, it

becomes possible to retime whole-body humanoid motions.

5.2.1 TOPP for ZMP constraints

Although it does not guarantee balance, the condition that the Zero-Moment Point

(ZMP) lies inside the convex hull of ground contact points is physically consistent

with the robot not tilting. In Pham and Nakamura (2012), the authors derived the

TOPP form (5.9) of this constraint for rectangular support areas. We now provide

a similar derivation for any convex polygonal area.

The coordinates of the ZMP defined on horizontal floor are given by:

 xZ

yZ

 = 1
ezfgi

 1 0 0

0 1 0

 τ giO (5.10)

The condition that (xZ , yZ) belongs to the convex hull of the ground contact points

is given in H-representation by Figure 4.6. Let us write an arbitrary line of this

system of inequalities as:

αyZ + βxZ + γ ≤ 0. (5.11)

Introducing uαβ := ( −α β 0 ) and uγ := c, multiplying (5.11) by −ezfgi

yields

0 ≥ uαβ · τ giO + uγ · fgi
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Expanding fgi and τ giO , the constraint becomes:

0 ≥
∑
i

mi(uαβ · pGi × (g − r̈i) + uγ · (g − r̈i))

≥
∑
i

mi(g − r̈i) · (uαβ × pGi + uγ)

Given the translation jacobian JGi and hessian HGi := ∂2pGi
∂q2 of each link’s COM,

one can write:

ṗGi = JGi q̇ = JGiqsṡ

p̈Gi = JGi q̈ + q̇>HGi q̇ = JGiqss̈+ ṡ2(JGiqss+ qs>HGiqs)

Using these expressions, (5.11) can finally be put in form (5.9) with:

aZMP(s) = −
∑
i

miJGiqs(uαβ × pGi + uγ),

bZMP(s) = −
∑
i

mi(JGiqss+ q>s HGiqs) · (uαβ × pGi + uγ),

cZMP(s) = g · (uαβ × pG +muγ).

This formulation allows the application of TOPP to maintain the ZMP inside its

stability polygon.

5.2.2 TOPP for frictional contacts

Projecting on the last six coordinates (5.5) of the equations of motion gives:

Π(M(q)q̈ + q̇>c(q)q̇ + g) = ΠJ>f (5.12)

with Π the corresponding 6×n projector. Using the pseudo-inverse (ΠJT )†, we can

express a least-square solution f0 to (5.12):

f0 = (ΠJ>)†Π · (M(q)q̈ + q̇Tc(q)q̇ + g) (5.13)

τ giO = E(q)M(q)q̈ + E(q)q̇>c(q)q̇ + E(q)g (5.14)
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where E(q) := S
(
In − (ΠJ>)†Π

)
is an actuated torques projection matrix. With

this last expression, we can express torque constraints τ ≤ τmax as

alstsq(s) = E(q)M(q)qs,

blstsq(s) = E(q)
[
M(q)qss + qs>c(q)qs

]
,

clstsq(s) = E(q)g(q)− τmax.

However, contact forces fi should also lie in their linearized friction cones (Defi-

nition 5), equivalently, T · f ≤ 0. One can use Quadratic Programming (QP) to

take into account these inequalities when solving for f at Equation (5.12), yet this

approach yields a torque projector E(q, q̇, q̈) with a non-linear dependency on q̇

and q̈, which makes it unsuitable for use with TOPP. This yields us to the observa-

tion that redundancy in the unactuated force space is unsuitable for use with

TOPP.

5.2.3 Preliminary experiments and discussion

In an early attempt to solve this issue, we used solutions to the QP problem with

inequality constraints only for specific values of the path tracking velocity ṡ, and use

a linear model to describe how f deviates from this solution when ṡ < 1 or ṡ > 1.

All solutions to Equation (5.12) can be written:

f(q, q̇, q̈) = f0(q, q̇, q̈) + Q̃(q)z (5.15)

where the expression of a particular solution f0(q, q̇, q̈) is given by Equation (5.13),

and Q̃(q) = (I−(ΠJ>C)†ΠJ>C) is the projector on the nullspace of the solution space.

We can use the vector z ∈ R3k to enforce the additional constraint Tf ≤ 0. Using

the chain-rule q̇ = ṡqs and q̈ = s̈qs + ṡ2qss in Equation (5.13), we can write the

variation of f0 between the retimed state (q, q̇, q̈) and the initial trajectory state

(q, qs, qss) as follows:

f0(q, q̇, q̈) = ṡ2f0(q, qs, qss) + (1− ṡ2)g̃ + s̈m̃,

g̃ := (ΠJ>C)†Πg(q),

m̃ := (ΠJ>C)†ΠM(q)qs.
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We verify that f0(q, q̇, q̈) = f0(q, qs, qss) when ṡ = 1, which corresponds to the

initial trajectory. Equation (5.15) becomes

f(q, q̇, q̈) = ṡ2
[
f0(q, qs, qss) + Q̃(q)z0

]
+(1− ṡ2)

[
g̃ + Q̃(q)z1

]
+ s̈

[
m̃+ Q̃(q)z2

]
Under this formulation, solutions to the general problem of finding (z0, z1, z2) such

that Tf(q, q̇, q̈) ≤ 0 still depend on both ṡ and s̈. Making the approximation of

choosing zi’s that only depend on q. First, taking (ṡ2, s̈) = (1, 0), we chose z0

from:
minz0 ‖z0‖

s.t. T
(
f0(q, qs, qss) + Q̃(q)z0

)
≤ 0

Note that this QP has a solution if and only if the input trajectory is feasible. Next,

we derived z1 using z0 at, e.g., (ṡ2, s̈) = (2, 0):

minz1 ‖z1‖

s.t. T
(
2f0(q, qs, qss)− g̃ + Q̃(q)z0 − Q̃(q)z1

)
≤ 0

Similarly for z2 at, e.g., (ṡ2, s̈) = (1, 1):

minz2 ‖z2‖

s.t. T
(
f0 + m̃+ Q̃(q)z0 + Q̃(q)z2

)
≤ 0

Once z0, z1 and z2 are decided, the linearized Coulomb constraint becomes (5.9)

with

afriction(s) = T (m̃+ Q̃(q)z2)

bfriction(s) = T (f0 − g̃ + Q̃(q)(z0 − z1))

cfriction(s) = T (g̃ + Q̃(q)z1)

Actuated torque limits are finally obtained from f using Equation (??), which

gives

atorque(s) = S>
(
M(q)qs − m̃− Q̃(q)z2

)
btorque(s) = S>

(
Mqss+ qs>c(q)qs

)
+ S>

(
g̃ − f0 − Q̃(q)(z0 − z1)

)
ctorque(s) = S>

(
g − g̃ − Q̃(q)z1

)
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This method assumes that the motion is always feasible at points (ṡ2, s̈) = (1, 0), (2, 0)

and (1, 1).

We applied this method in an experiment with the HRP4-R humanoid robot (Kaneko

et al., 2011), where we show how it can accelerate a slow quasi-static motion while

still maintaining ZMP balance, frictional contact and actuated torque limits. We first

designed a 53-second long reference motion satisfying static stability constraints by

suitable positioning of the COM. Specifically, the motion starts by moving the COM

to the left foot, then steps the right foot 15 cm forward, moves the COM to the right

foot, steps the left foot 15 cm forward, and finally moves the COM to the center

of the support area. This high-level description is converted to key postures using

inverse kinematics. Trajectory chunks are then interpolated between those postures

using B-spline curves with a fixed duration of 5.9 seconds for each segment. Foot

contacts are maintained in the interpolated trajectories using the method of Yamane

and Nakamura (2000) for closure of kinematic chains. Figure 5.2 shows a time-

lapse of the input motion.

We used TOPP to retime this trajectory. We defined the support area for the ZMP

constraints as a disc centered on the COM with radius 1 cm, resulting in conserva-

tive balance. The friction coefficient was set to 0.8 while the normal component of

contact forces was enforced to a minimum 10 N (by changing the right-hand side

of the linearized friction constraints). Actuated torque limits were set to 50% of the

robot’s limits. Figure 5.2 (bottom) shows a time-lapse of the retimed motion after

application of TOPP. The duration of the retimed trajectory is 24 s, i.e., 2× faster

than its input.

We ran simulations with more aggressive values of the parameters in OpenHRP

using full actuated torque limits and a 5 cm radius around the COM for the ZMP.

Figure 5.1 shows the retimed trajectory profile and MVCs thus obtained. The most

constrained part of the problem occurs when the COM gets close to the limits of the

support area, which saturates the contact constraints. The duration of the retimed

trajectory in simulation is 12.3 s, more than 4× faster than its input.

Note that, for now, we do not retime the complete trajectory as a whole because of

the discontinuities in (a(s), b(s), c(s)) that happen when switching between single

and double support. Rather, we set small time intervals around these transitions
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during which retiming was disabled (gray areas in Figure 5.1). The duration of

these intervals was set to 1.5 s on the real robot and 0.2 s in the OpenHRP experi-

ment.

Discussion. The naive method proposed above can be applied to accelerate mo-

tions that are already stable but it does not solve the core issue, namely, that redun-

dancy in the unactuated force space is unsuitable for time-optimal path tracking.

Note that this limitation is not limited to TOPP itself, as other unrelated methods

such as those based on QR decomposition Righetti et al. (2013) are equally unable

to deal with linearly dependent (i.e., redundant) contact forces. In our scope, such

redundancy is a problem. We will now see how to solve it using contact wrenches

at the whole-body level.

5.3 Gravito-inertial wrench cone

We now compute the gravito-inertial wrench cone following the approach that was

proposed by Qiu et al. (2011). In matrix form, Equations (5.6)-(5.8) can be written

as:

wgi
O =

∑
contact i

 −Ri 0

−[−−→OCi×]Ri −Ri

wc
i = Awall,

where wall is the stacked vector of the contact wrenches wc
i , and [·×] denotes the

cross-product matrix of a vector. The key observation here is that A only depends

on the kinematic transform (−−→OCi,Ri) between a the inertial frame at O and the

contact frame, both which are fixed for each contact stance.

Property 5. The gravito-inertial wrenches cone depends only on (1) the absolute

positions and orientations of the contacting links, and (2) the local geometry and

friction properties at the contact surfaces.

The contact wrenchwc
i is valid if and only ifwc

i ∈ nonneg(vi1, . . . ,vik) (V-representation),

in matrix form wc
i = Vizi with zi ≥ 0. This implies that wall = Vallz with z ≥ 0,

where

Vall :=


V1 0 0

0 . . . 0

0 0 VN

 .
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It follows that wgi
O = Awall = AVallz for z ≥ 0, which is the V-representation

of the GIWC. Using the double-description method (Section 4.2.2), one can now

define Ustance := (AVall)H to obtain the H-representation of this cone. The matrix

Ustance thus constructed is such that

Property 6. There exist valid wrenches at the contacts if and only if Ustancew
gi
O ≤

0.

The matrix Ustance depends only on the absolute positions pi and orientations Ri

of the contacting links, as well as the friction coefficients at each contact surface.

5.3.1 Static multi-contact stability

Bretl and Lall (2008) showed that a general static stability criterion including fric-

tion could always be calculated as a COM stability polygon. They further proposed

a recursive polygon expansion method to compute it. In this section, we provide an

alternative method based on the previous derivation.

When the system is in static equilibrium, the two equations ẍG = ÿG = 0 add up to

the four previously-mentioned z̈G = 0 and L̇G = 0. In terms of the gravito-inertial

wrench, these six equations become

 fgi
τ giO

 = m

 g
−−→
OG× g



By expanding the triple product (n × −−→OG × g), one can rewrite them equivalently

as:  I3 03×3

01×3 n>

 fgi
τ giO

 =

 mg

0


pG = pO − (n/mg)× τ giO + zGn

In concise form: Awgi
O = b and pG = Cwgi

O +d. Next, consider the stacked vector of

contact forces fall = [f c1 · · ·f cn]>. Linearized friction cones are given in half-space
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representation by linear inequalities Fif
c
i ≤ 0. For instance, four-sided friction

pyramids correspond to

Fi =


−1 0 −µi
+1 0 −µi
0 −1 −µi
0 +1 −µi


R>i .

Combining all Fi’s in a block diagonal matrix F yields an inequality Ffall ≤ 0.

Meanwhile, eq. (5.7)-(5.8) provide a linear mapping wgi
O = Wgi

Of
all from contact

forces to the gravito-inertial wrench. Summing up, the set of realizable contact

forces in static stability is given in half-space representation by

Ffall ≤ 0

AWgi
Of

all = b

Using the double description method, one can compute the vertex representation

of this set as fall =
∑
i λigi (λi > 0).2 The vertices of the COM stability polygon

are finally given by vi = Cgi + d.

Application to stair climbing

We demonstrate the applicability of the static stability condition by generating

quasi-statically stable trajectories in a stair climbing experiment. A quasi-statically

stable motion results from enforcing low accelerations in order to neglect the terms

p̈G and L̇G in the equations of motion.

Because we enforce slow velocities and keep the ZMP close to the COM, we do not

need to check the stability condition at each time instant: each segment has a sta-

tionary stability polygon, which makes stability checking straightforward: when in-

terpolating the linear COM trajectory pG(s) (s ∈ [0, 1]) for a given segment, suffices

to check whether its two extremities pG(0) and pG(1) lie in the support polygon.

Figure 5.3 shows the execution of the motion on the real robot. Compared to the

simulation environment, we needed to perform an additional fitting of the COM

2 Source code for the reduction of equality constraints in cdd is provided in the examples/ folder of
pymanoid. See the list of published software at the end of this manuscript.
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Fig. 5.4.: View of the generated COM trajectory in the transverse plane. Consecutive sup-
port areas are represented by blue polygons while the staircase is in brown. Dot-
ted red lines depict the COM trajectory. Note that the sagittal vector is pointing
rightward, so that the motion goes from left to right. The unit of both axes is the
meter.

coordinates at the single-support postures. The reason for this tuning is that, as

the motion deals with non-coplanar surfaces, we could not use HRP-4’s stabilizer

(which assumes all contacts are made with a horizontal floor). A general solution to

avoid this would be to develop a stabilizer that takes into account the static stability

polygon (rather than the traditional convex hull of ground contact points).

5.3.2 Robust multi-contact static stability

A static equilibrium configuration is said to be robust if not only the gravity wrench,

but any wrench in some neighborhood around the gravity wrench can be generated

by valid contact wrenches (Or and Rimon, 2006). In some limit situations, while

simple static equilibrium may be satisfied (e.g., when the COM is at the boundaries

of the support polygon in flat terrain), robust static equilibrium adds an informed

safety margin. Uncertainties such as model inaccuracies or unknown disturbances

can be modeled within this framework.

Or and Rimon (2006) studied robust equilibrium for a robot in a 2D environment

(one horizontal and one vertical directions) and for a polytopic neighborhood. They

showed that the set of COM positions that induce robust static equilibrium is no
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longer an infinite vertical band, but a polygon. They also gave a “line sweep”

algorithm to compute that polygon. Here, we show that the face representation of

the GIWC provides a fast test for robust static equilibrium in 3D, which generalizes

both (Bretl and Lall, 2008) (which discussed only simple equilibrium) and (Or and

Rimon, 2006) (which discussed only the 2D case).

In the case of static equilibrium, we have p̈G = 0 and L̇G = 0, so that wgi
O =

(mg,mpG × g) = Awall. We are now interested not only in the generation of

the gravity wrench (mg,mpG × g) but also in that of any wrench in a polytopic

neighborhood N (pG) around it. Consider for simplicity the neighborhood defined

as the convex hull of {(mg1,mpG × g1), . . . , (mgK ,mpG × gK)} where g1, . . . , gK

are vectors around g.

Consider the setsMk defined as

Mk :=

p : Ustance

 gk

p× gk

 ≥ 0

 (5.16)

and their intersectionM :=
⋂
k∈[1,K]Mk..

Proposition 7. M is the set of COM positions that ensure robust static equilib-

rium.

Proof. Assume that p ∈ M. Consider a wrench w∗ ∈ N (p). There exists λ1 ≥

0, . . . , λk ≥ 0 such that w∗ = m(λg1 + . . . λgK ,p× (λg1 + . . . λgK)). Since p ∈ M,

we have that, for all k,

Ustance

 gk

p× gk

 ≥ 0,

thus there exist valid contact wrenches wall1 , . . . ,wallK such that (−mgk,−mp ×

gk) = Awallk . By convexity, the contact wrench wall =
∑
k λkwallk is valid. On the

other hand, by linearity, we have w∗ = Awall. Together, these last two equations

show that the wrench w∗ can be generated. Since w∗ is arbitrary in N (p), this

implies that p induces robust equilibrium.

Conversely, assume that p induces robust equilibrium, i.e., all wrenches w ∈ N (p)

can be generated. In particular there exists a valid contact wrench wall1 that gen-

erates (mg1,mp × g1). By construction of Ustance, this implies that p ∈ M1. By
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Fig. 5.5.: Testing robust static equilibrium. The robot right arm is supported by the
ledge while its right foot is supported by an inclined box. The desired
neighborhood around the gravity wrench is associated with {g1, g2, g3, g4} =
{(0.15, 0, g), (−0.15, 0, g), (0, 0.15, g), (0,−0.15, g)}. We sampled one million ran-
dom COM positions, those of which satisfy robust static equilibrium are depicted
by a green dot. The aggregate of green dots outlines the shape of the robust
static equilibrium wrench cone. The three images show views from the X, Y and
Z directions respectively.

repeating this reasoning, one can show that p ∈ M2,. . . , p ∈ MK , which implies

that p ∈M.

It can be noted that theMk are infinite right prisms with axis parallel to gk. Thus,

if the gk are not collinear, then M will not be a right prism, but a polyhedron.

Nevertheless, from the development presented above, testing robust static equi-

librium requires simply to pre-compute once Ustance, and subsequently, for each

candidate COM position, to evaluate K matrix multiplications and comparisons as

given in (5.16). Note that the algorithm in (Bretl and Lall, 2008) would require to

perform K polytope projections in the pre-computation phase.

Figure 5.5 illustrates the proposed robust equilibrium test. For two surface contacts

(right arm and right foot), the matrix Ustance had dimension 105 × 6 and could be

computed in 3.5 ms on our 8-core 3.00 GHz microprocessor. Subsequently, each

test took 0.1 ms.
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5.3.3 Dynamic multi-contact stability

We can now resume the TOPP derivation from Section 5.2.2 on proper theoretical

ground. Consider a path p(s) of the COM (note that we have dropped the subscript

G for simplicity). Differentiating twice, we have

p̈ = pss̈+ pssṡ2.

From its definition (5.4), the angular momentum LG can be expressed in Jacobian

form3 LG = JLG(q)q̇ = JLG(s)qsṡ. Therefore, one can always write

L̇G = l1s̈+ l2ṡ2,

for some functions l1 and l2. In general, there is no function l such that l1 = ls and

l2 = lss (in other words, LG is non-holonomic). Exceptions include the cases when

LG = 0 or when LG is the angular momentum of a single rigid body.

Substituting the expressions of p̈ and L̇G into (5.6), we have:

wgi
O =

 m(g − pss̈− pssṡ2)

mp× (g − pss̈− pssṡ2)− l1s̈− l2ṡ2

 .
Thus, the condition Ustancew

gi
O ≤ 0 can be rewritten as

−s̈Ustance

 mps

mp× ps + l1

−ṡ2Ustance

 mpss

mp× pss + l2

+Ustance

 mg

mp× g

 ≤ 0,

which is in the canonical form of (3.3) The centroidal trajectory, i.e., the joint tra-

jectory of the linear and angular momenta (mṗ(t),LG(t))), is thus the only piece of

information required to formulate the contact stability constraint.

Implementation details. Our first attempts were consequently to interpolate a

centroidal trajectory, re-time it with TOPP to satisfy contact constraints, and then

interpolate a whole-body trajectory with the same linear and angular momenta

by Inverse Kinematics (IK). This approach is however hampered by the difficulty

in interpolating the angular momentum LG(t). Because of its non-holonomy, it

is impossible to integrate it into a position variable, as is the case with the linear

3 See the pymanoid source code for a sample implementation of angular-momentum Jacobians.
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momentum. We experimented with the suggestion from (Popovic et al., 2005) to

regulate LG = 0, but it resulted in large free limb movements with a tendency to

get the limbs in inconvenient positions (e.g., hands behind the back), making the

overall control task harder.

We subsequently opted for a different pipeline: interpolate the COM and end-

effector trajectories first, compute a corresponding whole-body trajectory q(s) by

inverse kinematics, and finally enforce contact stability along this trajectory by

TOPP. The angular momentum LG(q, qs) will then result from the configurations

computed by the IK solver.

Numerical TOPP solvers require relatively smooth velocity and acceleration profiles.

Discontinuities in velocity or acceleration are allowed and properly dealt with by

the TOPP library, but we found that the acceleration profiles returned by a velocity-

based IK solver are too erratic for proper use with TOPP. To avoid this, we used

an acceleration-based IK solver. The whole-body trajectory q(s) is computed as

the double-integral of an acceleration trajectory q̈(s), where accelerations are com-

puted as solutions to the following QP problem. Provided a reference trajectory

pG(s) and pH(s) for the COM and a steered non-contacting link (e.g., a hand of the

robot), minimize

wG‖JGqss + γ(ṗG∗(t)− JGqs) + q>s HGqs‖2

+ wH‖JHqss + γ(p∗H(t)− JHqs) + qsHHqs‖2,

such that

1. for each contact Ci, JCi q̇ss = −γJCi q̇s + q̇>s HCi q̇s, and

2. Kss(q̇min − q̇s) ≤ q̇ss ≤ Kss(q̇max − q̇s),

where q̇max := −Ks(q − qmax) and q̇min := −Ks(q − qmin). This problem can be

readily addressed by many off-the-shelf QP solvers. We used CVXOPT4 which is free

software and could deal efficiently with both equality and inequality constraints.

The reader is referred to (Escande et al., 2014) for a more general solution to QP-

based inverse kinematics.

4http://cvxopt.org/
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In all experiments, we used Ks = Kss = γ = 10s−1, wG = 1 and wlink = 0.1. COM

and end-effector trajectories were interpolated as simple line segments.

Application to dynamic motion generation

We first illustrate this method on a common stair climbing motion. The staircase

(red boxes, reconstructed from point cloud data) has a step height of 24 cm. The

motion is quasi-statically stable (it can be executed at arbitrary slow velocities) and

alternates single and double support segments where the projection of the COM is

moved linearly from one support foot to the other. The retimed motion is shown

in Figure 5.6. Computation times are reported in Table 5.1, where we detail the

three consecutive computations: that of the gravito-inertial wrench matrix Ustance

(TUstance), of the constraint vectors a(s), b(s), c(s) (Tabc) and of the re-timing by

our numerical TOPP solver (TTOPP).

Tab. 5.1.: Computation times (ms) for the stair climbing motion, averaged over 10 runs
on an 8-core 3.00 GHz processor. Segments are identified by their time stamps
(see Figure 5.6).

Segment (s) Size of Ustance TUstance Tabc TTOPP
0.0 – 0.4 114 × 6 4.2 2.0 130
0.4 – 1.0 16 × 6 1.3 2.0 350
1.0 – 1.2 162 × 6 4.5 2.2 560
1.2 – 2.0 16 × 6 1.3 2.0 360
2.0 – 2.8 162 × 6 4.3 2.2 150

Total – 15.6 10.4 1,550

Next, let us apply our method to the setting depicted in Figure ??. The robot climbs

a 10-cm box using two contacts: its right arm, set on a 90-cm high horizontal ledge,

and its left foot, set on a 25o inclined stepping surface. The motion generated in

this experiment may seem unnatural, as the robot could step on the box directly.

Yet, the motivation for this setting is two-fold. First, stability throughout this motion

cannot be checked by ZMP, as frictional contacts may be lost (the “sufficient friction”

assumption does not apply) and the contact surfaces non-coplanar. Second, the

solution to this constrained problem is not feasible at low velocities, which means

COM-based methods such as (Bretl and Lall, 2008) cannot be applied.

Figure 5.7 shows the execution of the motion in our physics simulator. In this

scenario, the friction coefficient of environment bodies (respectively the floor, box,

arm support and inclined plane) was set to µ = 0.9. Due to the high speed of

the retimed segment (the combined duration of the right-foot and left-foot steps
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is only two seconds), the position controller was not responsive enough to track

the reference trajectory exactly. To palliate this, we made time-optimal trajectories

slower by using a smaller friction coefficient µ = 0.7 in the computations of the

GIWC for TOPP (namely, µ = 0.7 and contact surfaces scale by 0.7) in order to get

a “safer” motion.

A further difficulty, compared to other experiments were humanoids walk on slightly

inclined surfaces, was that we could not use the stabilizer module of the humanoid,

which is designed for horizontal floors. Thus, the motion represented in Figure 5.7

was run with pure open-loop position control.

The transition between the first and second foot steps is the most challenging part of

the motion. Its configurations are not statically stable, and it therefore needs a non-

zero minimum velocity to be performed without falling. As COM trajectories are

straight lines in our design, the problem of finding a feasible whole-body motion for

this segment boiled down to finding a suitable COM velocity v. Manual trials being

unsuccessful, we chose this velocity heuristically as v∗ = arg maxv βv(0, 1), where

β is an internal vector field from TOPP representing the maximum acceleration

achievable along the path (see (Pham, 2014) for details). This heuristic provided

feasible solutions in practice. Furthermore, from sampling neighboring vectors, we

estimated the solid angle of valid COM velocity vectors around v∗ to 0.1 steradian,

i.e., less than 0.8% of the orientation space.

Tab. 5.2.: Computation times (ms) for the box climbing motion, averaged over 10 runs on
an 8-core 3.00 GHz processor. Segments are identified by their time stamps (see
Figure 5.7).

Segment (s) Size of Ustance TUstance Tabc TTOPP
0.0 – 6.7 113 × 6 4.4 2.4 420
6.7 – 15.0 84 × 6 3.7 2.5 310

15.0 – 15.3 55 × 6 3.0 2.5 60
15.3 – 21.4 118 × 6 4.0 2.5 320

Total – 15.1 9.9 1,110

Performance discussion. Tables 5.2 and 5.1 show the performances of our method

on the box and stair climbing motions. We compare these performances with those

reported in previous work by Hauser (Hauser, 2014) where the recursive polygon

expansion algorithm is used to retime humanoid trajectories under distributed con-

tact forces and actuator limits. The two main differences between this work and

our method are that (1) we calculate the GIWC rather than a recursive polygon

116



expansion, and (2) we use a numerical TOPP solver rather than a Sequential Linear

Programming (SLP) solver. In order to make run times more comparable, we used

the same path discretization resolution N = 100.

In accordance with previous work, we break down computation times as follows

• Pre-computation of feasible sets (TUstance +Tabc): the time reported in (Hauser,

2014) is 2.40 s, while our solution takes around 30 ms in both settings to

perform this operation. When actuator torque is not limiting, it is therefore

one to two orders of magnitude faster than previous work.

• Computation of the velocity profile (TTOPP): the time reported in (Hauser,

2014) is 2.46 s, while our solution takes between 1 s and 1.5 s in the previous

climbing motions. Two factors are concurring here to put execution times

on the same magnitude: we use a numerical TOPP solver, an approach that

is usually orders of magnitude faster than SLP; however, we do not prune

redundant inequalities, which is a side benefit of recursive polygon expansion.

Overall, our approach cuts down to tens of milliseconds the pre-computations where

previous work would spent half of the computing budget, while having comparable

performances on the rest of the time-optimal re-timing. This comparison should

of course be taken with care, as our robot, task, and computing environment are

different from (Hauser, 2014). What we point out here is the difference in orders

of magnitude on the computation times of feasible sets alone.

Conclusion

We have derived a general framework taking into account multi-contact stability

for humanoid robots, a crucial element of kinodynamic motion planners for this

category of robots. In particular, we showed how the general stability condition can

be integrated into TOPP, which is the key to our planning framework (see Chap-

ter 3). To the best of our knowledge, this is the first time that a truly dynamic,

non-quasi-static humanoid motion is discovered and reparameterized by TOPP

(previous works (Suleiman et al., 2010; Hauser, 2014) only reparameterized quasi-

statically stable humanoid motions).
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In the course of this study, we also identified that the question of interpolating the

angular momentum was of prime importance for high-level planning of humanoid

trajectories. In a primary attempt, we relied on an implicit interpolation result-

ing from Inverse Kinematics, but this approach does not give us control over the

resulting momentum. We address this difficulty in the next Chapter.
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6Multi-contact ZMP

„人の跡を求めず、

人の求めたるところを求めよ。

— Variation on松尾芭蕉

(俳人)

The ZMP is the dynamic quantity thanks to which roboticists solved the problem

of walking on horizontal floors. One of its key properties is that dynamic stabil-

ity, i.e., the balance of gravito-inertial forces by valid contact forces, implies that

the ZMP lies in the convex hull of ground contact points, the so-called support

area (Vukobratović and Stepanenko, 1972; Goswami, 1999). The support area thus

provides a necessary (non-sufficient) condition for contact stability on horizontal

floors.

For locomotion, a second key property of the ZMP lies in its coupling with the

position of the center of mass (COM). By keeping a constant angular momentum

and constraining the COM to lie on a plane, this relation simplifies into the Linear

Inverted Pendulum (LIP) model (Kajita et al., 2001; Sugihara et al., 2002). In the

LIP regime, the COM is “pushed away” from the ZMP under the linear dynamics of

a point-mass at the tip of an inverted pendulum. The stabilization problem is then

to control the position of the tip (COM) of the pendulum by moving its fulcrum

(ZMP).

These main two merits (a geometric stability condition and linearized dynamics)

are as well-known as the two main limitations of the ZMP: it does not account for

friction, and it can only be applied on horizontal floors. The latter results from

the definition of the ZMP as the point on the ground where the moment of gravito-

inertial forces is parallel to the vertical (i.e., rolling and pitching moments are bal-

anced) (Sardain and Bessonnet, 2004). In a general multi-contact scenario, each

contact defines its own surface and there is no single “ground” plane. In a clas-
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sic survey paper (Sardain and Bessonnet, 2004), Sardain and Bessonnet stated the

problem to address as follows:

The generalization of the ZMP concept [to the case of multiple non-coplanar

contacts] would be actually complete if we could define what is the pseudo-

support-polygon, a certain projection of the three-dimensional (3-D) con-

vex hull (built from the two real support areas) onto the virtual surface,

inside which the pseudo-ZMP stays.

In this Chapter, we provide a complete construction of the area conjectured by

Sardain and Bessonnet. Our first contribution is to characterize and calculate this

area in arbitrary virtual planes. Our analysis provides a geometric construction

along with a simple and fast calculation algorithm. Also, contrary to the assumption

that “friction limits are not violated” usually made in the literature, the support

areas we compute fully take friction into account.

From a practical point of view, locomoting systems usually regulate their linear

and angular momenta. For example, a linear-pendulum model implies that the

robot keeps a constant angular momentum around and a constant-height COM.

These tasks restrain the set of realizable dynamic momenta, and thus contract the

ZMP support area. Our second contribution here is a new algorithm to compute

these contracted support areas, taking both frictional and dynamic-momentum con-

straints into account.

Combining these two advances, we design a whole-body controller for humanoids

locomoting on arbitrary terrains. We take the ZMP plane above the COM and

regulate the robot dynamics around that of a linear non-inverted pendulum. We

showcase the applicability of the controller by locomoting a model of the HRP-4

humanoid robot in a challenging multi-contact scenario involving combinations of

foot and hand contacts.

6.1 Previous work

Stability criteria. On horizontal floors, the support area for the ZMP is the CHCP.

However, when the robot makes contact with different non-coplanar surfaces, the
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Fig. 6.1.: Overview of the construction we propose. The ZMP support area, including
positive-pressure and frictional constraints, is computed in an arbitrary virtual
plane (here, above the robot’s head). For locomotion, linearized pendulum dy-
namics are obtained by regulation of the angular momentum. The shrinking
of the support area incurred by this regulation is fully taken into account. A
whole-body controller based on these developments finally enables multi-contact
locomotion for arbitrary environments.

ZMP can no longer be defined as a point on the “ground” and the CHCP has no

established connection with dynamic stability. Various attempts have been made in

the literature to overcome this difficulty.

One line of research (Mitobe et al., 2004; Sardain and Bessonnet, 2004; Harada

et al., 2006b; Inomata and Uchimura, 2010) conjectured that the convex hull of

contact points (CHCP, a 3D volume in the general case) conveys the stability con-

dition, and consequently sought to define a new point lying within this volume.

Both (Mitobe et al., 2004) and (Inomata and Uchimura, 2010) assumed that the

moments at centers of pressure and ZMP are all zeros, which is not the case in

general1 and thus results in a point that may not exist even in situations where

1As pointed by Sardain and Bessonnet (Sardain and Bessonnet, 2004), the term “zero moment
point” is misleading since the moment at these points has actually a non-zero component along
the surface normal.
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stability is possible. Harada et al. (Harada et al., 2006b) considered the CHCP as

ZMP support volume when the robot makes two feet contact with a horizontal floor

and hand contacts with the environment. They detailed how to project the support

volume on the floor to obtain a ZMP support area. While their construction applies

to general dynamic wrenches with non-zero angular momenta, like all approaches

based on convex hull of contact points, it assumes infinite friction coefficients (see

Appendix 6.4.2 for details). In our work, we will construct ZMP support areas that

also take friction into account.

A parallel line of research kept the ZMP in a plane but relaxed the constraint that

it coincides with the ground (Kagami et al., 2002; Sugihara et al., 2002; Shibuya

et al., 2006; Sato et al., 2011). Kagami et al. (Kagami et al., 2002) had the insight

that the ZMP could be taken relative to any plane normal, however they assumed

that this plane should still pass through all contact points, which restricted their

scope to a maximum of three arbitrary contacts points. Sugihara et al. (Sugihara

et al., 2002) introduced the notion of “Virtual Horizontal Plane” (VHP) in which

contact points are projected on a virtual plane via the line connecting them to the

COM, and the convex hull of these points is then taken as ZMP support area. This

construction is only valid in the linear pendulum model. Shibuya et al. (Shibuya

et al., 2006) took the idea further by considering a virtual plane above the COM,

resulting in marginally stable pendular dynamics rather than that of an unstable

inverted pendulum. Sato et al. (Sato et al., 2011) applied the same idea to stair

climbing. However, like CHCP, VHP support areas suppose infinite friction coeffi-

cients (see Appendix 6.4.2). The approach we propose now also relies on virtual

plane and simple pendular dynamics, but we derive support areas also account-

ing for friction and establish that they are a necessary and sufficient condition for

contact stability.

Breaking away from the notion of ZMP, another line of work has focused on build-

ing criteria that keep equivalence with full contact stability (Saida et al., 2003;

Hirukawa et al., 2006; Qiu et al., 2011; Caron et al., 2015a). The seminal work

by Saida et al. (Saida et al., 2003) impulsed a shift of paradigm from the ZMP

to the gravito-inertial wrench. It also proposed to orient the virtual plane orthog-

onally to the resultant force, which reinstates the support area as convex hull of

(projected) contact points – an idea that may have been overlooked by the liter-

ature so far. Next, Hirukawa et al. (Hirukawa et al., 2006) constructed the first
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full stability criterion for the gravito-inertial wrench. However their construction

was high-dimensional as it relied on the full vector of stacked contact forces. Later

works (Qiu et al., 2011; Escande et al., 2013; Caron et al., 2015a) reduced these

stacked variables to the gravito-inertial wrench itself using the double-description

method. Compared to traditional ZMP solutions, this approach has the benefit of

providing a full stability criterion, but at the cost of the non-linear dynamics of the

gravito-inertial wrench. Furthermore, the nice geometric construction of the ZMP

area is replaced by a considerably less intuitive six-dimensional cone. The method

that we introduce reconciles full stability, linear-pendulum dynamics and a geomet-

ric support area.

Control. When it comes to control, the use of the ZMP is historically tied to the

LIP model, which was introduced in (Kajita et al., 2001; Sugihara et al., 2002) and

used in a wealth of subsequent research works (Kajita et al., 2003; Mitobe et al.,

2004; Morisawa et al., 2005; Shibuya et al., 2006; Harada et al., 2006a; Harada

et al., 2006b; Sato et al., 2011; Morisawa et al., 2014; Englsberger et al., 2015;

Tedrake et al., 2015). Kajita et al. (Kajita et al., 2003) brought in the technique of

model predictive control as a way to generate COM trajectories from desired ZMP

positions. Harada et al. (Harada et al., 2006a) proposed an analytical alternative

with polynomial solutions for the coupled COM-ZMP trajectories. Recently, Tedrake

et al. (Tedrake et al., 2015) exhibited a closed-form solution for the linear-quadratic

regulator tracking a reference ZMP. However, these methods only apply to LIPs on

horizontal floors.

Aiming for locomotion on rough terrains, Morisawa et al. (Morisawa et al., 2005)

relaxed the planar constraint on the COM to arbitrary two-dimensional manifolds,

while recent papers (Morisawa et al., 2014; Englsberger et al., 2015) chose to

control the Capture Point (CP) rather than the ZMP. As a control variable, the CP

stabilizes the unstable dynamics of the LIP. In terms of support areas, though, the

question is the same for the CP and the ZMP and was not addressed by these de-

velopments.2 With the method proposed in this paper, we realize a control system

with marginally stable dynamics, while at the same time deriving the support area

corresponding to our control variable.

2On a related note, we observe that, to the best of our knowledge, none of the previous works using
LIP found in the literature noticed that the ZMP area was shrunk by the LIP assumptions on the
angular momentum and COM height.
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As with stability criteria, solutions breaking away from control points were also

explored in the whole-body control literature. The main alternative is to regulate

contact forces directly, resulting in force distribution schemes where desired contact

forces and torques are tracked by a whole-body controller (Hirukawa et al., 2006;

Hyon et al., 2007; Lee and Goswami, 2010; Ott et al., 2011; Righetti et al., 2013).

Force objectives can express whole-body tasks, such as tracking of desired COM or

angular momentum, as well as local ones, such as minimizing friction forces (Ott et

al., 2011) or end-effector torques (Lee and Goswami, 2010). Righetti et al. (Righetti

et al., 2013) characterized force-distribution controllers for linear-quadratic objec-

tives in the absence of inequality constraints. Overall, force distribution schemes

yield fast computations and can cope with arbitrary contact conditions, but they

lack the foresight of methods based on control points and support areas. Indeed,

for locomotion, support areas provide both reachable COM locations and a stabil-

ity margin (the point-to-boundary distance). Finding such indicators in the high-

dimensional contact-force space is still elusive. In recent developments, (Nagasaka

et al., 2012; Audren et al., 2014) added a level of foresight to their contact-force

controllers via model-predictive control, while Zheng et al. (Zheng and Yamane,

2015) constructed a metric that can be used as wrench-space stability margin. We

will now show that support areas can be derived in arbitrary multi-contact configu-

rations as well, providing both COM reachability and stability margins suitable for

locomotion.

6.2 ZMP support areas under frictional

constraints

6.2.1 Linearized wrench cones

We pursue the framework outlined in Chapter 5. However, contrary to the previous

derivation where we used a single wrench at each contact, we now suppose a set

of contact points and their complementary contact forces. Let us denote by fij the

ray vectors of the linearized friction cones at each individual contact point. Friction

constraints are then written:

f ci =
∑
ray j

λij fij , λij ≥ 0. (6.1)
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The set of ray vectors {fij} can be computed directly from the contact frame and

friction coefficient µi. For example, the expression of a four-sided pyramid is{
ni ± µi√

2 ti ±
µi√

2 bi
}

, with (ti, bi,ni) the full orthonormal contact frame. Inject-

ing the span combinations (6.1) into eq. (5.7) yields a span representation for the

contact wrench cone: f c
τ cO

 =
∑
i,j

λij

 fij
−−→
OCi × fij

 λij ≥ 0.

Let us define τO,ij = −−→OCi × fij . After re-indexing the couples (i, j) into a single

index i (counting the same contact point Ci multiple times accordingly), we get:

 f c
τ cO

 =
∑
i

λi

 fi

τO,i

 , λi ≥ 0. (6.2)

We have thus obtained the span representation of the contact wrench cone. A

motion is then dynamically stable if and only if its contact wrench can be written

as (6.2) for a certain set of coefficients λi ≥ 0.

6.2.2 Zero-tilting Moment Point

Let O denote a fixed reference point in the absolute frame, not necessarily on the

floor. Let n be a fixed unit space vector, not necessarily vertical. We are interested

in computing the ZMP in the plane that contains O and that is orthogonal to n,

hereafter denoted by Π(O,n). Note that, in the original horizontal-floor setting, O

belongs to the ground plane and n is vertical.

We follow the footsteps of Sardain and Bessonnet (Sardain and Bessonnet, 2004) in

considering the non-central axis ∆w(n) where the moment of a wrenchw is parallel

to n (note that (Sardain and Bessonnet, 2004) assumed that n is vertical).

Definition 8 (Zero-tilting Moment Point of a wrench in a plane). The zero-

tilting moment point of a wrench w = (f , τ ) in the plane Π(O,n) is the point

Z ∈ Π(O,n) such that n× τZ = 0.
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We consider the ZMP Z of the contact (equivalently, gravito-inertial) wrench with

respect to an arbitrary plane. Its defining equation n× τ cZ = 0 can be rewritten as

n× (−→ZO × f c) + n× τ cO = 0. (6.3)

The first term of this equation expands to (n·f c)−→ZO−(n·−→ZO)f c, but since n·
−→
ZO =

0 we have:

pZ = n× τ cO
n · f c

+ pO. (6.4)

Note how, because of the ratio in the formula above, both the contact and gravito-

inertial wrench define the same ZMP pZ . Also, when n · f c = 0, eq. (6.4) has no

solution and cannot be used to define a point Z. This singularity is present in the

horizontal-floor setting as well, where a horizontal resultant fgi yields a division by

zero in the formula of the ZMP (Sardain and Bessonnet, 2004).

6.2.3 Construction of the support area

Equation (6.4) shows how the ZMP is a two-dimensional affine projection of the

gravito-inertial wrench. Since contact stability is characterized by the GIWC, we

define the support area as the set of ZMPs corresponding to realizable contact

wrenches.

Definition 9. The support area S of the ZMP in the plane Π(O,n) is the image

of the GIWC by the projection (6.4).

The key idea to calculate this area is to use the span representation (6.2) of the

CWC, which enables rewriting eq. (6.4) as

pZ =
∑
i λi(n× τO,i)∑
i λi(n · fi)

+ pO, λi ≥ 0. (6.5)

Next, define
−→
OZi := n× τO,i

n · fi
= n× (−−→OCi × fi)

n · fi
. (6.6)

Denote by pi := (n ·fi) the virtual pressure of the contact force generator fi through

the virtual plane. Then,

pZ =
∑
i λipi pZi∑
i λipi

, λi ≥ 0. (6.7)
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Note that, on a horizontal floor, all contact forces fi point upwards, n is vertical

and points upward, in such a way that λipi > 0 for all i. The point Z is then a

convex combination of the Zi’s. Furthermore, eq. (6.6) simplifies to Zi = Ci, i.e., ,

the vertices of the support area S area coincide with the contact points, themselves

taken as the vertices of the contact polygon. We see here that our definition of the

support area agrees with the horizontal-floor setting.

In general, however, virtual pressures pi can be either positive or negative.3 Let

us then partition the set of generator indices I into I+ := {i | pi > 0} and I− :=

{i | pi < 0}. For any S ⊂ I, denote by σ(S) :=
∑
i∈S λi|pi| and define

αi := +λipi
σ(I+) for i ∈ I+, α := σ(I+)

σ(I) .

βi := −λipi
σ(I−) for i ∈ I−, β := σ(I−)

σ(I) .

Equation (6.5) becomes

pZ = 1
α− β

α ∑
i∈I+

αipZi − β
∑
i∈I−

βipZi

 .

Define the positive-pressure polygon as the convex hull of Zi’s for i ∈ I+: P+ :=

{
∑
i∈I+ αipZi , αi ≥ 0,

∑
i αi = 1}, and define the negative-pressure polygon P−

mutatis mutandis. If one of these two polygons is empty, Z simply belongs to the

other. Otherwise, the above expression can be rewritten as

pZ = αpZ+ − βpZ−
α− β

, (6.8)

where α ≥ 0, β ≥ 0, Z+ ∈ P+ and Z− ∈ P−.

We can now characterize the support area.

3We assume n is chosen so that none of them is zero, which is easy to do since there is only a finite
set of generators {fi}.
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Proposition 8. If one of the two polygons P+ or P− is empty, S is equal to the

other. Otherwise, Let D = P+ − P− = conv({r1, . . . , rk}) denote the vertices of

the Minkowski difference of the two convex polygons. Then, the support area S is

the reunion of the two polygonal cones C+ and C− given by

C+ = P+ +
∑
iR+ri,

C− = P− +
∑
iR+(−ri).

In particular, when P+ ∩ P− has non-empty interior, S covers the whole plane

Π(O,n).

Proof. eq. (6.8) can be reformulated as

pZ = pZ+ + β

α− β
−−−−→
Z−Z+ = pZ− + α

β − α
−−−−→
Z+Z−

Therefore, the set of points Z defined by this equation is

S :=
{
pZ+ + β

α− β
−−−−→
Z−Z+, α ≥ β ≥ 0, Z± ∈ P±

}
∪

{
pZ− + α

β − α
−−−−→
Z+Z−, β ≥ α ≥ 0, Z± ∈ P±

}
.

Given the orderings of α and β, we can further simplify the ratios into a single

positive scalar, so that S = C+ ∪ C− with

C+ =
{
pZ+ + λ

−−−−→
Z−Z+, λ ≥ 0, Z± ∈ P±

}
, (6.9)

C− =
{
pZ− + λ

−−−−→
Z+Z−, λ ≥ 0, Z± ∈ P±

}
. (6.10)

The set D = P+ − P− is a convex polygon as Minkowski difference of two con-

vex polygons. To conclude, we show that C+ = P+ + R+D. The inclusion ⊂ is

straightforward from (6.9). Now, let pC = pZ+
0

+ µ(pZ+
1
− pZ−) denote any point

in P+ + R+D. Define

pZ+ := 1
1 + µ

pZ+
0

+ µ

1 + µ
pZ+

1
.

One can check that pC = pZ+ + µ(pZ+ − pZ−), where Z+ belongs to P+ as convex

combination of two points from this convex polygon. Thus C ∈ C+, which estab-
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contact 1
contact 2

contact 3

Fig. 6.2.: Example of computed support area in the dual-cone case. There are three con-
tacts in total. Contacts 1 and 2 are made with the same horizontal surface and
correspond to the feet of the robot. Contact 3 is located one meter above the
others and made with a vertical surface in front of the robot. The virtual plane
is taken horizontal and 50 cm above the feet’s plane. Polygons P+ and P− used
in the construction process are drawn in purple. Blue lines connect the vertices
generated by contact 3. They illustrate that a single surface contact can yield
vertices in both P+ and P− at the same time.

lishes the converse inclusion ⊃. Finally, note how, when P+ ∩ P− has non-empty

interior, D contains a neighborhood of the origin and C+ = P+ +R+D becomes the

whole plane.

When both pressure polygons are non-empty, Proposition 8 provides the V-representation

of the two polygonal cones. The dual (half-space or H-)representation of these

cones provides the boundary segments and half-lines of the support area. General

techniques such as the double description method (Fukuda and Prodon, 1996) can

be employed here to convert from one representation to the other. However, since

the problem at hand is two-dimensional, one can also use the following simple

algorithm.

In 2D, the Minkowski difference has only two extreme rays (r1, r2) which are easy

to extract in linear time. Next, suppose w.l.o.g. that r1 × r2 > 0, and denote by

v1 := arg mini r1×vi and v2 := arg maxi r2×vi. Half-lines of the H-representation
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are given by v1 +R+r1, v2 +R+ and all line segments (in clockwise ordering of the

convex hull) from v1 to v2. See the implementation in pymanoid4 for details.

6.2.4 Geometric properties of the support area

We now provide a geometric formulation of the support area freed from the choice

of the arbitrary reference point O used in the construction. A first thing to notice is

that the only coordinate of O influencing S is its position along the non-central axis

∆c(n) of the wrench.

Proposition 9. The support area S does not depend on the coordinates of the

reference point O in the plane Π(O,n).

Proof. By definition of the support area,

S =
{
Z ∈ Π(O,n) : −→OZ = n×τ cO

n·fc
}

(6.11)

where (f c, τ c) ∈ Cc ranges over the CWC. Now, choose a point O′ ∈ Π(O,n) and

consider

S ′ =
{
Z ′ ∈ Π(O,n) = Π(O′,n) :

−−→
O′Z ′ = n×τ c

O′
n·fc

}
. (6.12)

Consider one particular wrench (f c, τ cO) and Z and Z ′ defined by the equalities

inside (6.11) and (6.12). We have

−−→
O′Z ′ = n× τ cO′

n · f c
= n× (

−−→
O′O × f c) + n× τ cO

n · f c

=
−−→
O′O − (n ·

−−→
O′O) f c

n · f c
+−→OZ =

−−→
O′Z,

Thus, Z ′ = Z, and since the wrench (f c, τ c) ∈ Cc we considered is arbitrary, we

have shown that S = S ′.

By contrast, the support area does change for displacements of O along the non-

central axis ∆c(n). Let us analyze the impact of this remaining coordinate by relax-

4 https://github.com/stephane-caron/pymanoid
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ing the assumption (−→OZ ·n) = 0 into (−→OZ ·n) = dZ , where dZ is the axial coordinate

of the virtual plane Π(dZ ,n). The definition n× τ cZ = 0 expands to

n×
−→
OZ × f c = n× τ cO

(n · f c)−→OZ − dZf c = n× τ cO,

so that

pZ = n× τ cO
n · f c

+ pO + dZ
f c

n · f c
. (6.13)

Repeating the step from eq. (6.6),

−−→
OZi := n× τO,i

n · fi
+ dZ

fi
n · fi

,

pZi = pCi + (dZ − di)
fi
n · fi

. (6.14)

We thus obtain the same equation (6.7), but this time the vertices Zi of the support

area have a different axial coordinate dZ . It also appears from eq. (6.14) that Zi

is the intersection between the plane Π(dZ ,n) and the line passing through Ci and

directed by fi, the latter being a ray of the linearized friction cone. We have thus

established that:

Property 7. The vertices of the support area are located at the intersection be-

tween the virtual plane and the rays of the friction cones.

This property gives a first geometric interpretation of the support area, yet it only

provides its vertices. We saw in Prop. 8 how reconstructing the area from these

vertices is not straightforward. Still, when a suitable plane orientation n can be

found so that S is a polygon, we get a simple geometric characterization.

Corollary 2 (Geometric characterization of the support area). When all virtual

pressures pi := (n · fi) are positive, the support area is the convex hull of the

intersection between linearized friction cones and the virtual plane.

This result is coherent with the horizontal-floor setting where the virtual plane

intersects friction cones at their apexes, i.e., at contact points, and virtual pressures

are all positive from contact unilaterality. A condition similar to the positivity of

virtual pressures was also observed by Saida et al. (property 4.1 in (Saida et al.,

2003)) for plane components of the gravito-inertial wrench.
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Fig. 6.3.: Geometric construction of the ZMP support area in the polygonal case. Ray
generators of friction cones (red lines) are traced until they intersect the virtual
plane, yielding points inside the support area (black dots). The support area (in
green) is the convex hull of this set of points. The blue polygon corresponds to
the individual support polygon of the right contact. These polygons can be used
for an alternative construction of the ZMP support area suited to the problem of
contact planning.

Figure 6.3 illustrates the geometric construction. The support area (in green) is

the convex hull of the set of black points projected from friction rays (red lines).

Alternatively, each individual contact surface projects its own support polygon (in

blue for the right contact), and the ZMP support area is the convex hull of these

individual polygons. This second construction is useful for contact planning as it

provides a valuation criterion for new contacts, namely the expansion that they

bring to the support area.

Finally, let us determine in which cases a polygonal ZMP support area can be found,

which boils down to finding a suitable vector n. Let Cf denote the cone positively

spanned by the fi’s. Then, the condition ∀i, (n · fi) > 0 is equivalent to n ∈ C∗f ,

where C∗f is the dual cone of Cf defined by

C∗f = {y : ∀x ∈ Cf , y · x ≥ 0}.

The set of solutions C∗f can be computed from Cf using e.g., the double description

method. In particular, C∗f = {0} if and only if Cf = R3, i.e., the fi’s positively span
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the whole space. Thus, either contact forces can generate any arbitrary resultant

force5 or one can find an orientation n such that the support area is polygonal.

6.2.5 Generality of the concept

Although historically the ZMP has been mostly used in locomotion, the support

areas constructed in this section are defined for arbitrary contact wrenches. As such,

they also apply to related fields dealing with mobility under frictional constraints,

such as grasping or workpiece fixturing.

As a mathematical object, support areas are 2D (non-linear) projections of the 6D

contact wrench cone. From there, one could question the generality of this con-

struction: is it the “best” we can do? Could there exist a 3D projection that would

account for all three components of the resultant moment, rather than only two?

For the interested reader, we provide some elements of answer to these questions

in Appendix 6.4.3.

6.3 Multi-contact locomotion with pendulum

control

6.3.1 Relationship between ZMP and COM

From a control point of view, the interest of the ZMP lies in its relationship with the

acceleration of the COM.

Proposition 10. The position of the ZMP relative to the COM is bound to the

dynamic momentum by

p̈G = g + γ + d̈G
dG − dZ

−→
ZG+ n× L̇G

m(dG − dZ) , (6.15)

where g is the gravity vector. The constant γ := −(n ·g) coincides with the gravity

constant g when n is upward vertical.

5this condition is weaker than force closure, which usually assumes that contact forces can generate
arbitrary resultant forces and torques
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Proof. By definition of the gravito-inertial wrench,

fgi = m(g − p̈G),

(n · fgi) = −m(γ + d̈G).

Expanding τ giO = −−→OG× fgi − L̇G in eq. (6.13) yields

(n · fgi)−→OZ = n×
−−→
OG× fgi − n× L̇G + dZf

gi

(n · fgi)−→GZ = (dZ − dG)fgi − n× L̇G

m(γ + d̈G)−→ZG = m(dZ − dG)(g − p̈G)− n× L̇G. (6.16)

Equation (6.15) is a rearrangement of the latter.

We saw in Section 6.2 how to construct support areas in virtual planes of arbitrary

axial coordinate dZ . We now establish that, from a control perspective, all planes

on the same “side” of the COM (dZ > dG or dZ < dG) are equivalent.

Proposition 11. Let Z ∈ Π(dZ ,n) denote the ZMP resulting from a given wrench

by eq. (6.13). Then, eq. (6.15) yields the same COM acceleration regardless of the

plane coordinate dZ .

Proof. Denote by (fgi, τ giO ) the gravito-inertial wrench generating Z by (6.13). Let

us differentiate (6.15) with respect to the parameter dZ :

∂p̈G
∂dZ

= γ + d̈G
dG − dZ

∂
−→
ZG

∂dZ
−

[
(γ + d̈G)−→ZG+ n×L̇G

m

]
(dG − dZ)2 .

From (6.13), we have ∂
−→
ZG/∂dZ = −fgi/m(γ+d̈G). Meanwhile, the factor between

brackets can be replaced by (6.16), yielding:

∂p̈G
∂dZ

= −fgi

m(dG − dZ) −
(dZ − dG)fgi

m(dG − dZ)2 = 0.

Note that this proposition does not mean that two ZMPs with the same planar coor-

dinates but in different planes yield the same COM acceleration. Equivalent ZMPs

are aligned on the axis ∆gi(n) directed by the resultant force fgi, and thus have

different coordinates in different planes in general.
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6.3.2 Linear pendulum models: LP and LIP

Taking n as the upward vertical vector of the world frame n = eZ , eq. (6.15) can

be rewritten as

ẍG = g + z̈G
zG − zZ

(xG − xZ)− L̇Gy
m(zG − zZ) (6.17)

ÿG = g + z̈G
zG − zZ

(yG − yZ) + L̇Gx
m(zG − zZ) (6.18)

When the angular momentum is zero and zZ < zG, these expressions reduce to the

well-known Linear Inverted Pendulum (LIP) model (Kajita et al., 2001; Sugihara

et al., 2002):

 ẍG = −ω2
IP(xZ − xG)

ÿG = −ω2
IP(yZ − yG)

ωIP :=
√

g + z̈G
zG − zZ

∣∣∣∣∣∣
zZ<zG

The assumption that zZ < zG was taken for granted in previous works as the ZMP

was supposed to lie on the ground. But our analysis now allows us to select the

other side of the domain identified in Proposition 11, that is to say zZ > zG. In this

new setting, equations (6.17)-(6.18) reduce to a Linear Pendulum (LP):

 ẍG = ω2
P(xZ − xG)

ÿG = ω2
P(yZ − yG)

ωP :=
√

g + z̈G
zZ − zG

∣∣∣∣∣∣
zZ>zG

(6.19)

The key difference between the two approaches lies in the stability of the control

law. The equilibrium position of an LIP is unstable in the sense that the COM is

always diverging away from the ZMP. Consequently, to regulate the COM around a

fixed position, the ZMP of an LIP needs to be constantly in motion. On the contrary,

the equilibrium position of an LP is stable, with the COM always moving towards

the ZMP. Taking the ZMP above the COM rather than below thus directly results in

a stable6 control law, with no need for intermediate stabilization variables such as

the Capture Point.

6 Since there is no damping term in eq. (6.19), the precise stability property is marginal stability,
i.e., the COM is either at or orbiting around the ZMP. Convergence can be added by e.g., leveraging
the angular momentum to generate a damping term.
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6.3.3 ZMP support areas under LP regulation

In general, keeping the ZMP in the support area does not provide full contact sta-

bility as the ZMP only represents two out of the six wrench coordinates (the four

remaining coordinates have constraints that ought to be checked as well). However,

it becomes a full stability condition when the four other coordinates are regulated

by z̈G = 0 and L̇G = 0, which yields LP dynamics. In this regime, Equations (6.17)-

(6.18) become a one-to-one mapping between ZMP and dynamic-momentum co-

ordinates. Adding these regulations consequently reduces the support area to a

smaller polygon or cone, which we will call the LP support area for short.7 It turns

out that the computation of this set by the double-description method is very similar

to that of the COM static-stability polygon, which we gave in Section 5.3.1.

Suppose that pG is known. The four dynamic-wrench equations for the LP regime

become, for the gravito-inertial wrench,

 n> 01×3

03×3 I3

 fgi
τ giO

 =

 −mg
−−→
OG× fgi

 .
Again, expanding the triple product (n × −−→OG × fgi) in the expressions above, one

can rewrite them equivalently as

 zGI3 [n×]

(n×−−→OG)> −n>

 fgi
τ giO

 =

 −mg−−→OG
0


In concise form: A′wgi

O = b′. The coordinates of the ZMP are given by eq. (6.13) as

pZ = C′wgi
O + d′. From there, the computation of the dynamic ZMP support area

using the double description method is exactly the same as with static stability. We

repeat it here to spare the reader some page-turning end-effector actuation.

Consider the stacked vector of contact forces fall = [f c1 · · ·f cn]>. Linearized fric-

tion cones are given in half-space representation by linear inequalities Fif
c
i ≤ 0.

Combining all Fi’s in a block diagonal matrix F yields an inequality Ffall ≤ 0.

Meanwhile, eq. (5.7)-(5.8) provide a linear mapping wgi
O = Wgi

Of
all. Summing up,

7 Strictly speaking, our definition of an LP-regulated system includes L̇Gz = 0, which is not necessary
to achieve linear pendulum dynamics.
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the set of realizable contact forces in static stability is given in half-space represen-

tation by

Ffall ≤ 0

A′Wgi
Of

all = b′

Using the double description method, one can compute the vertex representation

of this set as fall =
∑
i λigi (λi > 0). The vertices of the ZMP stability polygon are

finally given by v′i = C′gi + d′. Note that, contrary to static stability setting where

the COM area is always a polygon, the LP support area for the ZMP may be either

conical or polygonal. We observed both outcomes in simulations.

6.3.4 Trajectory generation for the LP model

We now design a trajectory generator for ZMP-COM trajectories based on the model-

preview control formalism introduced in previous works (Kajita et al., 2003; Audren

et al., 2014). We use the ZMP and COM as command and output variables respec-

tively. First, we interpolate ZMP trajectories as line segments

pZ(t) = u(t)p0 + (1− u(t))p1.

The COM being constrained to a plane Π(zG, eZ) parallel to the one Π(zZ , eZ) of

the ZMP, LP dynamics (6.19) yield:

pG(t) = v(t)p0 + (1− v(t))p1 + (zG − zZ)eZ ,

where v̈ = ω2
P(u − v). Using line segments, the two-dimensional problem of con-

trolling (xG, yG) from (xZ , yZ) is thus reduced to the one dimensional problem of

controlling v from u.

We now define the state of our control problem by x = [v v̇]> and its command

by the linear position u of the ZMP. Discretizing the time interval into K steps of

duration δt, the system’s linear dynamics become

xk+1 =

 1 δt

−ω2
Pδt 1

xk +

 0

ω2
Pδt

u (6.20)
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Let X = [x>0 · · ·x>K ]> and u = [u0 · · ·uK−1]>. Applying (6.20) repeatedly, we build

the matrices Φ and Ψ such that X = Φx0 + Ψu. We assume that the system starts

with zero COM velocity, so that x0 = 0.

Finally, we formulate the trajectory generation problem as a Quadratic Program

(QP) as follows:

Objective: min w1c1(u) + w2c2(u)

Constraints: 0 ≤ u ≤ 1

xK = Ψlastu = [ 1 0 ]>

uK−1 = 1

The objective is the weighted sum of two terms:

c1(u) = 1
K

∑
k(vk − uk)2

c2(u) =
∑
k(uk − uk−1)2

The first one minimizes COM accelerations while the second regularizes the ZMP

trajectory. We chose the weights w1 = 1 and w2 = 100.

The constraints ensure respectively that:

1. the ZMP belongs to the line segment (u(t) ∈ [0, 1])

2. the COM ends at the destination point (vK = 1) with zero velocity (v̇K = 0),

3. the ZMP also ends at the destination point (uK−1 = 1).

With this method, maintaining dynamic stability is mostly enforced by including the

segment [p0,p1] inside the LP support area computed for the initial COM position

pG(0). However, the COM will move as the robot performs the motion, which

affects both the position and shape of the LP support area.

On a technical note, set aside the two regularization objectives, this optimization

problems falls directly under the TOPP framework (c.f. Chapters 3 and 5. One

could consequently trade smoothness of COM accelerations for Admissible Velocity
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Propagation (AVP), allowing for a direct integration into a kinodynamic planner of

COM trajectories.

6.3.5 Validation in simulations

We implemented the whole pipeline described so far to generate dynamically-stable

multi-contact motions for a model of the HRP-4 humanoid robot. The scenario is

depicted in Figure 6.4. The robot has to step on inclined platforms in order to reach

its goal configuration on the right. Because there is no platform for its left foot

in the middle of the course, the only way for it to complete the task is to use of

the elevated “wall” platform with its left hand while keeping its right foot on the

opposite tilted surface. Relying on these two simultaneous contacts, the humanoid

can perform a long stride with its left leg, which would have been impossible to

achieve in single-support.

As input given to solve this scenario, we assume that a contact planner provides

a sequence of contact stances, where a stance provides both a reference position

of the COM and a set of contact points. The first stage of our solution computes

stance-to-stance COM trajectories. To move from stance i to stance i + 1, the con-

troller considers the line segment [p(i)
G ,p

(i+1)
G ]. The trajectory generator is called

if this segment is included in the LP support area S(p(i)
G , zZ) for the initial COM

position. Otherwise, zZ is increased until the segment is included in S(p(i)
G , zZ).

This condition was quite easy to fulfill in practice, as we observed that the region

S(pG, zZ) grows like the section by the plane Π(zZ ,n) of a cone passing through G,

i.e., shrinking to a single point when zZ → zG and expanding proportionally to the

distance (zZ − zG). In practice, taking a ZMP one meter above the center of mass

(HRP-4 is 1.5-meter tall) was enough to generate the complete motion depicted in

Figure 6.4.8

Once the reference COM trajectory pG(t) has been computed for the overall motion,

whole-body joint-angles are generated by differential inverse kinematics (IK) under

the following constraints (by decreasing task weight):

8 One may be tempted to take high plane coordinates zZ , as it would only enlarge the corresponding
support areas. However, we observed empirically that very high planes tend to generate numerical
instabilities in both the double-description library cddlib (Fukuda and Prodon, 1996) and the
trajectory generator described in 6.3.4.
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TASK DESCRIPTION GAIN [Hz] WEIGHT

Contacting end-effector 1 100
Free end-effector 0.01 100
Center of mass tracking 1 1
Angular momentum variations N/A 0.2
Velocity smoothness N/A 1
Preferred joint-angles 0.05 0.1

Tab. 6.1.: Gains and weights used in the differential IK tracker (N/A: no gain for tasks
regulating accelerations)

1. tracking of the contacting end-effector poses,

2. tracking of the COM trajectory,

3. minimum variations in angular momentum

4. preferred values for some joint-angles.

We used our own IK solver for the task. Similarly to (Lee and Goswami, 2010), this

solver is formulated as a single-layer QP problem with linear inequality constraints.

Gains and weights used in the simulations are reported in Table 6.1, while other

simulation parameters are given in Table 6.2. Other implementation details are

available in the source code pymanoid.9

Center-of-mass, feet and hands motions generated by locomotion are not compat-

ible with a strict regulation of the angular-momentum. As such, a whole-body

controller can only provide a “best effort” solution that tries to keep variations in

angular-momentum to a minimum (L̇G ≈ 0), while LP support areas correspond

to dynamic stability for L̇G = 0. We therefore confirmed the validity of our ap-

proach by computing contact forces satisfying dynamic-equilibrium and frictional

constraints at each time step of the generated motion. We confirmed that such

forces always exist. Force vectors are depicted in Figure 6.4.

6.3.6 Performance

Overall, our controller prototype runs at around 30 Hz on an average laptop com-

puter. Performance depends both on the number and relative positions of contacts.

9 https://github.com/stephane-caron/pymanoid
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DESCRIPTION SYMBOL VALUE

Friction coefficient (all contacts) µ 0.5
Number of traj. gen. timesteps K 100
Duration of traj. gen. timesteps δt 10 ms
Plane normal n [0 0 1]
Step duration TS 2.5 [s]
Velocity limits q̇max 0.5 [rad/s]

Tab. 6.2.: Simulation and trajectory generation parameters

In our experiments with cdd on the previous striding motion, single-support areas

can be computed at around 100 Hz, while calculations slow down to around 10 Hz

when the robot swings its left leg with hand on the wall. We note here that our

code is not optimized: it suffers from two performance limitations imposed by the

prototyping environment:

• The global interpreter lock, due to the Python interpreter, which prevents full

use of all CPU cores on multi-threaded programs.

• The object-lock mechanism in OpenRAVE, which prevents parallelization of IK

and support area computations due to their common use of an “environment”

variable.

Finally, we found that some configurations in the previous striding motion (in par-

ticular when the free leg swings with a hand on the wall) throw cdd in an infinite

loop. In this case, we timeout its execution and relaunch it as soon as possible. The

overall stability of the whole motion can still be assessed by continuity: support

areas "morph" from one COM position to the next, so that, even if the computation

of the support area fails at time t, contact stability is still ensured if the ZMP is in

the support area at t− δt and t+ δt.

6.4 Discussion

6.4.1 Plane coordinate selection

In our development, the coordinate of the virtual ZMP plane seems to be a free

variable, which could be set to an arbitrary value by the user. In practice however,

the plane coordinate has an impact on the ZMP-COM trajectories generated by our
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MPC controller: a “low“ ZMP-COM distance produces trajectories with back-and-

forth oscillations, while a “high“ distance yields bang-bang trajectories. We chose

a suitable value empirically so as to hit the sweet spot where the COM trajectory

is monotonic and varies smoothly. For instance, in the striding motion above, the

altitude difference between COM and ZMP was set to zZ − zG = 0.9 m.

6.4.2 CHCP and infinite friction

Methods that take the Convex Hull of Contact Points (CHCP) as ZMP support ar-

eas rely by construction on the assumption that arbitrary contact forces can be

exerted at each contact points, i.e., that friction coefficients are infinite. This as-

sumption was reasonable for e.g., walking on horizontal floors, where the COM is

high enough to lie inside contact friction cones. However, it becomes problematic in

more general settings such as multi-contact locomotion or walking on low-friction

floors (apart from sliding, foot yaw rotations due to insufficient friction have also

been observed and studied (Cisneros et al., 2014; Caron et al., 2015b)).

The rationale for taking the CHCP as ZMP support area or volume goes as follows.

First, the set S of realizable ZMPs is convex. The ZMP can, in particular, be a center

of pressure on a given contact surface, which in turn can be realized at any vertex

of the corresponding contact polygon. Thus, the ZMP can be realized at any contact

point, which makes S is a convex set containing all contact points. The smallest

such set is the CHCP.

Friction comes into play with the resultant force. Suppose that the ZMP is located

at a vertex Ck of a given contact polygon. From the analysis of Section 6.2, the

resultant force f c must be realized by f ck , while all other contact forces f cj = 0

(j 6= k). (From eq. 6.7, pZ = pZk = pCk implies that only the λi’s corresponding

to Ck can be strictly positive.) Therefore, the resultant f c of all contact forces must

lie in the friction cone Ck. This is impossible in situations such as the one depicted

in Figure 6.5: assuming small linear and angular momentum, f c must be directed

toward the vicinity of the center of mass (eq. (6.15)), and thus lies outside of Ck.

This is the reason why the actual ZMP support area in this case is smaller than the

convex hull of contact points.
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6.4.3 Can we do better than ZMP?

Proposition 9 implies that, while the moment τ giO depends on the reference point

O, its projection Z on Π does not depend on the plan coordinates of O. In this

sense, the ZMP decouples the moment of a wrench from the position at which it

is taken; yet at the cost of one dimension, as it only represents two out of the

three moment coordinates. Could a “generalized” three-dimensional ZMP perform

a similar decoupling for all three coordinates of the moment? Unfortunately the

answer seems to be negative at first, at least in the following sense:

Property 8. At least one coordinate of the ZMP depends on the reference point O.

Formally, let pZ(O) = pO + B(f) τO denote any affine projection of the moment

τO, where the matrix B(f) can depend non-linearly on f . The set of displacements
−−→
OO′ that leave Z invariant is a vector space of dimension at most two.

Proof. Let O and O′ denote two points such that pZ(O′) = pZ(O). Then,
−−→
O′O +

B(f)
−−→
OO′ × f = 0, which one can write C

−−→
OO′ =

−−→
OO′ for C := B(f)[−f×]. The

translation vector
−−→
OO′ thus belongs to the eigenspace E of C associated to the

eigenvalue 1. To conclude, remark that dim(E) ≤ rank(C) ≤ rank([f×]) ≤ 2.

Let us then consider the remaining moment coordinate which is not represented by

the ZMP. Our analysis following eq. (6.4) can be applied mutatis mutandis to this

coordinate:

n · τ giO
n · fgi

=
∑
i λin ·

−−→
OCi × fi∑

i λi(n · fi)
=
∑
i λi(n · fi)

n·
−−→
OCi×fi
n·fi∑

i λi(n · fi)
.

A natural definition of the spatial point including all three coordinates (let us call it

tentatively the n-Moment Point or n-MP) is then

pM = pO + n× τ giO
n · f

+ n · τ giO
n · f

n. (6.21)

The vertices of its support volume V can be computed in the same fashion as in

Section 6.2 by

pMi = pO + n×
−−→
OCi × fi
n · fi

+ n ·
−−→
OCi × fi
n · fi

n.
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Fig. 6.5.: Situation where the ZMP support area (green stripes) is smaller than the convex
hull of ground contact points (blue polygon). The robot has its two feet (trans-
parent red boxes) set one meter apart on a horizontal floor (in gray). Its COM
is 50 cm above ground, and the friction at contact is µ = 0.5. The ZMP cannot
be located at the corner Ck of the convex hull, as it would imply that the contact
force exerted at this point (in magenta) lies outside the friction cone Ck (in red).

The geometric construction of support areas can also be applied mutatis mutandis

to V: when all virtual pressures (n · fi) have the same sign, V is the convex hull of

the above vertices, while it is otherwise the union of two polyhedral convex cones

built on the Minkowski difference of positive- and negative-pressure polyhedra. An

implementation of this construction can be found in the pymanoid library.

The n-MP is a three dimensional spatial point equivalent to the moment τ giO , in the

sense that one can be computed from the other by

τ giO = −−→
OM × (n · fgi)n+ (n · −−→OM)(n · fgi)n.

In other words, M represents the screw coordinates of the gravito-inertial wrench

along the non-central axis ∆gi(n), with magnitude n · fgi and pitch n ·
−−→
OM .

However, adding the third moment coordinates makes the shape of the support

volume V depend on the choice of the reference point O. Formally:

145



Property 9. There is no non-empty subspace of displacements
−−→
OO′ of the reference

point O, independent from the resultant fgi, that leaves the n-MP invariant.

Proof. Consider a displacement
−−→
OO′ of O in the plane. From eq. (6.21), it results

in a variation
−−→
OO′ · n×f

gi

n·fgi of the n-MP coordinate along n. This term needs to be

zero for any displacement leaving the n-MP invariant, thus
−−→
OO′ is parallel to either

n or fgi. The former would yield a variation of the plane coordinates of the n-MP

(i.e., , the ZMP). The latter is excluded, since we look for invariance independent

from the gravito-inertial resultant.

Conclusion

We have derived the geometric construction of ZMP support areas in arbitrary

planes from arbitrary contact wrench cones. Focusing on locomotion, we saw how

the use of simplified control laws such as the linear pendulum model shrinks down

the ZMP support area. Consequently, we proposed a novel algorithm to calculate

this new area, and applied the concept to design a whole-body controller for loco-

motion across arbitrary contact situations, which we demonstrated on challenging

simulation scenarios. It is, to the best of our knowledge, the first time that the ZMP

and Linear Pendulum models are applied for locomotion on arbitrary terrains,

with both implementation and solid theoretical foundations.
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7Conclusion

In this thesis, we have explored the questions of motion planning and control for

humanoid robots with the aim to make humanoid motion planning practically fast

so that in can run in a fast control loop. Our contributions towards this goal have

developed three axes: kinodynamic decoupling, force-space curtailment, and di-

mensional reduction of the control space.

Kinodynamic decoupling

While we inspected the design of kinodynamic motion planners, we found out that

motion planning was only successfully addressed for geometric problems, while the

landscape of completeness and empirical results for kinodynamic planning was way

more nuanced. In particular, proofs of correctness (probabilistic completeness) pro-

vided in the geometric case fail to generalized to kinodynamic systems such as hu-

manoid robots, and other results published for such systems relied on assumptions

far too complex to be checked on practical systems. We therefore derived our own

proof of probabilistic completeness for a vast class of planners, namely those based

on trajectory interpolation. This is the first time that a completeness guaran-

tee is established under assumptions that can be straightforwardly checked on

actual robots.

However, we found kinodynamic planning in the state space manifold (as is com-

monly done) intractable for humanoid motion planning. We consequently intro-

duced in Chapter 3 an original method that can decouple the kinematic and dy-

namic components of the kinodynamic problem, allowing the motion planner

to work only on the geometric configuration space of the robot, which has a much

simpler structure than the state space manifold. To the best of our knowledge, it

is the first time that a kinodynamic planner in the configuration space is able

to discover truly dynamic motions, including the non-statically-stable ones that

require constant non-zero accelerations.

147



Force-space curtailment

Narrowing down on humanoids, we reviewed in Chapter 4 the physics of contact

and fundamental calculation techniques that allowed us to derive an original con-

tribution, namely the first-ever analytical formula of the contact wrench cone

of rectangular surfaces. This formula is of prime importance, as it allows the use of

lower-dimensional coordinates to describe whole-body dynamics without losing the

complementary stability conditions. Furthermore, the formula being derived analyt-

ically, it provides instantaneous computations at run time.

We then extended our developments to multi-contact scenarios in Chapter 5. We

showed how the general stability condition of the gravito-inertial wrench cone can

be integrated with TOPP, thus fitting in our kinodynamic planning framework, and

asserted the feasibility of our solution in simulation experiments on challenging

dynamical motions. Surprisingly, this is the first time that a truly dynamic, non-

quasi-static humanoid motion is discovered and reparameterized by TOPP, as

previous works all focused on retiming quasi-static humanoid motions.

Dimensional reduction of the control space

Wrench-based conditions provide a practical yet delicate framework for autonomous

planning, as trajectory interpolation in the 6D wrench space is still an open ques-

tion. We addressed this issue in Chapter 6 with a change of paradigm. We gen-

eralized the notions of ZMP support area to multi-contact, which is a novel

and maybe the most significant contribution of this thesis. Based on this advance,

we constructed and demonstrated a complete whole-body controller with which a

humanoid can walk in challenging environments using a simple linear pendulum

rooted at a ZMP above the robot’s head. It is, to the best of our knowledge, the first

time that the ZMP and Linear Pendulum models are applied for locomotion on

arbitrary terrains.

These new conceptual tools integrate with our overall approach of reducing the

state and control spaces of the robot for fast motion (re)planning. With the general-

ized ZMP and pendular control law, planning can be done in the three-dimensional

geometric space of the COM, which is significantly smaller and structurally simpler

than the space of generalized coordinates.
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Planner in the loop

The outcome of our work is a kinodynamic planning framework, as depicted in

Figure 1.1, in which the planning space is low-dimensional thanks to the reduced

control space. Control trajectories are then converted to joint-angle trajectories in

two decoupled steps, IK then TOPP. Meanwhile, despite curtailing contact force

redundancy, our multi-stability conditions still fully capture the local contact dy-

namics; they ensure that local controllers always have a range of feasible solutions

around which they can regulate local contact forces, centers of pressure and contact

yaw moments. The overall pipeline finally illustrates how motion planning can be

integrated in a fast control loop.
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A
Elements of Contact planning

For space robots or manipulators with fixed bases, the notions of motion and actu-

ated joint trajectory seem to coincide: given the time evolution of joint-angle values,

one can apply the equation of motion to univocally compute the complete motion of

the robot. This is because interactions between the robot and the environment are

fully determined in such cases, with contact forces being nonexistent or fully deter-

mined (and unbounded) by fixed contacts, respectively. The story is of course dif-

ferent for limbed robots that locomote by making and breaking temporary contacts.

In this case, contact forces are bounded and not fully determined: the environment

can “choose” them in the nullspace of friction and momentum constraints.

A set of contact locations made at a given point in time is called a stance. By

locations, we mean indifferently point (Escande et al., 2013) or surface contacts

(the latter can be reduced to the former under proper assumptions, as shown in

Chapter 4). In their early humanoid motion planner, Kuffner et al. (2002) applied

RRT to plan new motions within a fixed stance. This solution could only move

the free-flying coordinates of the humanoid inside the reachable space delimited by

the fixed contact condition. Later developments (Bretl and Lall, 2008; Hauser et

al., 2008) enabled a larger reachable space by using discrete stance changes: first,

performing a graph search in a sample of the stance space (where nodes are stances

and edges are steps), then planning a whole-body trajectory following the resulting

step sequence.

A drawback in discretizing the stance space lies in the large impact of the sampling

resolution on the algorithm’s performance: too sparse a sampling and no solution

may be found, too large a sampling and the execution time may be prohibitive. To

palliate this, (Bouyarmane and Kheddar, 2011; Escande et al., 2013) developed an

alternative where the continuum of the stance space is explored, with guiding from

heuristic cost and distance functions, rather than discretized.
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In both approaches, planning takes place in the stance space and configurations

are considered subsequently. Yet, the stance space is not an easy environment to

plan in: its dimension grows linearly with the number of contact points or sur-

faces, and its free regions are conditioned by the geometric structure of the robot

(i.e., calls to an IK solver are required to compute obstacle-avoiding postures). In

this appendix, we consider planning in the space of COM positions. That is, a COM

trajectory is determined in the first place, and stances supporting it are computed

subsequently.

A.1 Problem statement

The formulation is the same as in Chapter 5, with our n-DOF humanoid robot de-

scribed by an (n + 6)-dimensional vector of generalized coordinates q, the last six

Components of which describe the position and orientation of the free-flying link.

We model the contact between the humanoid and its environment as a set of con-

tact points1 σ that is called a stance (Hauser et al., 2008). The equation of motion

of the robot in the stance σ is

M(q)q̈ + q̇>C(q)q̇ + g(q) = S>τ +
∑
i∈σ

J>i (q)fi, (A.1)

similarly to (5.1), with S the projection on actuated coordinates. Due to the power

limits, torques are bounded by

τmin ≤ τ ≤ τmax, (A.2)

while contact forces are constrained to lie in linearized friction cones

|fix| ≤ µfiz, |fiy| ≤ µfiz. (A.3)

We say that the configuration q is supported by the stance σ, written q ∈ Fσ,

when there exists a solution {τ ,f1, . . . ,fk} to Equations (A.1), (A.2) and (A.3).

Furthermore, two stances σ and σ′ are adjacent when there exists a configuration

q ∈ Fσ ∩ Fσ′ .

1 We do not use the equivalent wrench formulation here.
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A given stance σ allows for a given volume of free-link motions, but it is necessary

to change stances in order to move the free-link in its full reachable space. We

therefore consider motions with (a finite number of) switches in the supporting

stance. Similarly to Hauser et al. (2008) and Escande et al. (2013), our goal is to

compute a sequence of stances (and associated whole-body postures for the robot)

connecting the initial stance to a goal area.

A.2 Contact planning in COM space

We will use the static stability criterion introduced and computed in Chapter 6 (c.f.

Section 6.3.3). The support polygon thus computed only depends on the horizontal

plane coordinates (xG, yG) of the COM. We choose to perform motion planning

using a RRT in the two-dimensional space (xG, yG).

The tree looks for a path between an initial and target COM positions. At each

extension, arbitrary COM coordinates (xG, yG) are sampled from an estimate of the

globally reachable region and the planner tries to extend one of its reached states

in order to get closer to (xG, yG). The overall process is reminded in Figure 6.

Algorithm 6 COM-RRT
Input : pG,start, pG,goal
Output : A feasible motion (q(t), σ(t)) such that pG(0) = pG,start and pG(T ) =
pG,goal; or Failure
σstart ← GENERATE_STANCE(pG,start)
T ← {(pG,start, σstart)}
for i = 1 to N do
pG ← SAMPLE([Xmin, Xmax]× [Ymin, Ymax])
EXTEND(T ,pG)
if EXTEND(T ,pG,goal) then

return BACKTRACK_TRAJECTORY(T ,pG,goal)
end if

end for
return Failure

Differences from the generic RRT of (LaValle and Kuffner, 2001) occur in the EX-

TEND and GENERATE_STANCE functions. In the extension step, we use the k-

nearest neighbors heuristic with k = 10 (Pham et al., 2013c) to raise the likelihood

of a successful extension. The underlying metric d(pG, σ) is the distance from the

target COM position pG to the support polygon of the stance σ.
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Fig. A.1.: Extension toward a candidate COM of a four-link stance with four non-coplanar
contacts: two rectangular feet and two point sticks. Contact points and surfaces
are drawn in black. The blue polygon represents the stance’s support area. The
green cone depicts the “eclipse” of the polygon by the COM. It corresponds to the
positions at which the stick S2 can be put so that the resulting stance stabilizes
the candidate COM.

Algorithm 7 EXTEND() function
Input : tree T , COM target pG
Output : Success or Failure

1: N ← NEAREST_STANCES(T ,pG)
2: S ← {EXTEND_STANCE(σ,pG), σ ∈ N}
3: if S 6= ∅ then

4: T ← T ∪
{

arg min
σ∈S

d(pG, σ)
}

5: return Success
6: end if
7: return Failure

The core routine here is EXTEND_STANCE, which we will now explain. Let us

denote by v1, . . . ,vm the vertices of the support area, in trigonometric order. We

define the extension set of the stance as

ext(σ) = {v | pG ∈ conv({v1, . . . ,vm, v)}}

This extension set turns out to be a cone that one can compute as follows. First,

take the sequence of signed distances

si := vi+1 − vi
‖vi+1 − vi‖

× (pG − vi),
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with the convention that the m + 1 index loops to 1. When pG is outside of the

support polygon, this sequence has positive and negative entries. Furthermore, all

positive (resp. negative) elements are consecutive. Then, define the two points

were the signed distance changes sign as

u1 := vj1 s.t. sj1 > 0 ∧ sj1−1 < 0

u2 := vj2 s.t. sj2 < 0 ∧ sj2−1 > 0

Finally, ext(σ) is given by the cone defined by the apex pG and the two rays r1 =

(pG − u1) and r2 = (pG − u2). Figure 8 illustrates this procedure.

We extend the stance by either setting a free link ` ∈ free(σ) or moving a contacting

link to intersect the extension cone. In the latter case, we consider only the links

that can be moved without affecting the side of the support polygon opposite to

the target COM. This set is computed by mapping each vertex vi to its closest link

`(vi) (for the point-to-volume 3D euclidean metric) and using the signed distances

to determine the side of each vertex. In fine,

candidates(σ) := free(σ) ∪ {`(vj) | sj < 0} − {`(u1), `(u2)}

Our overall stance-extension algorithm is summarized in Figure 8.

Algorithm 8 EXTEND_STANCE() function
Input : initial stance σ, COM target pG
Output : stance σ′ stabilizing pG, or Failure

1: (j1, j2), (r1, r2)← ext(σ)
2: for each link ` ∈ candidates(σ) do
3: (x′, y′)← SAMPLE_CONE(pG, r1, r2)
4: t← GROUND_POSE_AT(x′, y′)
5: σ′ ← GENERATE_POSTURE(σ ∪ {(`, t)})
6: if σ′ was found then
7: return σ′

8: end if
9: end for

10: return Failure

As illustrated by the call to GENERATE_POSTURE in the above pseudo-code, all the

pipeline we described rests on an inverse-geometry solver. Posture Generation is

the geometric problem of finding a vector of generalized coordinates q satisfying a

155



Fig. A.2.: HYDRA humanoid robot. Left: geometric model in false colors. Middle: kine-
matic structure of the robot. Right: picture of the real robot.

set of constraints such as DOF limits or, in a given stance σ, that all contacts i ∈ σ

are made. We solve the posture generation problem by inverse kinematics using

the prioritized kinematic control framework from (Kanoun, 2012). The reader is

referred to (Brossette et al., 2014) for a more general approach to multi-contact

posture generation.

A.3 Experiment

We conduct our experiments in OpenRAVE (Diankov, 2010) with a model of the

HYDRA humanoid robot developed in our laboratory, which is depicted in Figure

A.2. In its current version, the robot has 41 degrees of freedom and is actuated by

Electro-Hydrostatic Actuation (EHA). See Kaminaga and Nakamura (2015), Sato

et al. (2015), and Kang et al. (2015) for details.

The setting of the experiment is a rubble field, as depicted in Figure A.3. Following

the idea from Khatib and Chung (2014), we replace the robot’s hands by walking

sticks. The sticks give the robot a wider geometric range, in turn allowing for larger

support areas. We ran COM-RRT with pG,start set to the middle of the rubble field.

For now, our implementation of the GENERATE_STANCE function samples foot and

stick poses around the COM until a solution is found.
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Figure A.3 shows a stance sequence computed by our solution, with the underlying

RRT depicted in Figure A.4. The humanoid starts in a configuration where its legs

stand on two non-coplanar rubble blocks and are almost crossed. It first moves

its right, then left stick before performing a a left step. Two stick moves later, it

performs a second left step, this time reaching a second block left of the first one,

immediately followed by a right step putting both feet on the same block. Finally,

after repositioning the two sticks, it performs an additional right step on the next

block forward.

Conclusion

We have sketched how to implement a contact planner supporting the whole-body

planning machinery developed in the core of this thesis, in the particular case of

the static stability criterion. Contact planning and high-level planning interact as

depicted in Figure 1.1. In the present experiment, we showed how a COM static-

stability polygons can be used to guide contact planning, with new contacts sup-

porting further motions of the COM, and so forth. A contact planner designed to

follow the dynamic stability areas from Chapter 6 can be developed in a similar

fashion.
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Fig. A.3.: Stance sequence generated by our planner. A stick-carrying variant of the HYDRA

humanoid evolves on a randomly-generated rubble-field. Our planner’s state
space is the two-dimensional plane of horizontal COM position. In the sequence
above, each stance results from an extension toward a COM sub-goal.
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Fig. A.4.: Exploration of the RRT in the horizontal plane for the stance sequence depicted
in Figure A.3. COM positions and trajectories are represented by green dots
and lines, respectively. The green star corresponds to the starting COM position.
Contact locations, either rectangular surfaces or stick points, are drawn in red
while the blue areas correspond to superposed support polygons (plotted with
transparency for readability).
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BComponents developed for the

DARPA Robotics Challenge

During the DARPA Robotics Challenge1, robots were expected to solve a number of

tasks under teleoperation by a human operator. Execution time and teleoperation

bandwidth were restricted, so that teams needed to implement some level of au-

tonomy on their robots. Yet, a human operator could still provide meaningful input

to the robot on a regular basis via the team’s teleoperation software, which was

called Operator Control System (OCS) during the challenge. In this Appendix, we

describe the design of the OCS we developed in Team Hydra in preparation for the

challenge.

Like many teams, we chose ROS2, on top of which we developed our own com-

ponents. Our interface is based on RViz, the ROS visualization software, which

comes with various extension commodities such as panels and interactive markers.

Panels are areas of the interface where one can add arbitrary widgets connected to

arbitrary commands. Interactive markers will be detailed later on.

To realize the valve-turning task, we have developed a number of components, split

between two categories corresponding to perception and execution. Perception

components include the construction of an environment model, identification of the

valve position, and estimation of contact locations. Execution components include

walking pattern generation, inverse kinematics and trajectory generation.

1 http://www.theroboticschallenge.org/
2 The “Robot Operating System http://www.ros.org, Operating System”, which is actually not

an operating system but stands as a middleware running on Linux that also provides a software
distribution and compilation tools.
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B.1 Perception

Environment

We build a 3D point-cloud model of the environment using a 2D scanning-type

laser range sensor UTM-X002S (Hokuyo Automatic Co. Ltd) tilted along the pitch

axis by a MX-64 motor (Dynamixel). For this purpose, we used the ROS pack-

ages hokuyo_tilter and pointcloud_tools implemented by Kiyoshi Irie (Chiba

Institute of Technology). Calibration between the environment model with respect

to the humanoid’s kinematic chain was done by manual identification of the kine-

matic transform between the sensor base frame and the robot’s body. This approach

has limited precision, as validation is done by a human operator, and is sensible

to joint-calibration errors. Consequently, we prepared for execution-time updates:

when limbs of the humanoid appear in its field-of-vision, the operator can tune the

transform so as to match them with the kinematic model.

Here, the human operator implements a feedback loop between the point cloud

and the robot’s kinematic model. This feedback loop could be automated, e.g., by

sampling points on the robot’s 3D mesh and using point registration methods to

match them in the point-cloud. The underlying problem is to calibrate the sensor’s

base transforms with respect to the robot’s kinematic chain. Birbach et al. (2015)

demonstrated the feasibility of an autonomous solution to this problem using visual

markers for simultaneous calibration of several sensory inputs.

Mesh identification

The position, orientation and size of the valve are input by the human operator with

feedback from the point cloud. To enable this input, we developed a model-fitting

interface based using a custom RViz panel and the interactive_markers library3.

In this library, a “marker” consists in:

• a 3D mesh or a primitive shape (e.g., a box),

• a set of “controls”,

• a right-click menu.

3http://wiki.ros.org/interactive_markers
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The marker controls are graphical handles by which the operator can translate or

rotate the mesh along any of its degrees of freedom (see Figure B.1).

Fig. B.1.: Manipulation marker for a wheel mesh model. Control handles for the six de-
grees of freedom (translation and rotation) are depicted in red, green and blue
for the x-, y- and z-axis respectively.

Algorithm 9 Model-fitting Procedure
1. Add the valve marker

(button from the valve panel)

2. Enable marker controls
(right-click menu of the valve marker)

3. Translate and rotate the valve mesh to match the position and orientation
given by the point cloud
(marker controls)

4. Adjust the scale of the mesh
(slider from the valve panel)

5. Iterate 3 and 4 until fitting is complete

6. Disable marker controls
(right-click menu of the valve marker)

The operator then follows the model-fitting procedure described in Algorithm 9.

Overall, there are seven parameters to fit: the mesh’s scale, position and orientation.

Although the complete execution of the procedure takes less than a minute to a

trained operation, this task ought to be solved by the software as well, e.g., using

point-cloud registration methods (Rusu et al., 2009).

Contact locations

The next step is to estimate the contact locations on the valve. To enable natural

input of contact coordinates with respect to a 3D mesh, we developed a wrapper to
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Fig. B.2.: Interface of the Operator Control System with a model of the HRP4-R humanoid
robot. Its head has been replaced with an adjustable plate (in red) for the laser-
range sensor frame. Panels on the left: default “Displays” from RViz and a cus-
tom panel for IK control. Panels on the right: Ghost model, Walking, Language
and Wheel. The ghost model is used to preview IK results before execution on
the real robot. Walking markers can be used to control the Walking Pattern Gen-
erator (Santacruz and Nakamura, 2012). The language panel is used to query
a large human-behavior database for postures (Takano and Nakamura, 2008).
Finally, the wheel panel allows to add/remove the valve marker, update its scale,
send the reaching and turning commands. It displays two sliders: one for the es-
timate of the current wheel rotation, and the second for the desired turn angle.
(Points above the robot head are artifacts from the sensor.)
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interactive_markers, the manipulation_markers library, which is publicly avail-

able at:

https://github.com/stephane-caron/manipulation_markers

Manipulation markers consist of

• a 3D-meshed “parent” marker, and

• a set of primitive-meshed “contact” markers.

Contact markers are used to calculate the end-effector poses (i.e., position and ori-

entation) by which the robot makes contact with their parent mesh. They can be

added on-the-fly by the operator via the right-click menu. Because their kinematic

transform are defined in the parent marker’s reference frame, moving the parent

marker (in our case, turning the valve) automatically updates the position and ori-

entation of each of its contact markers.

B.2 Motion generation and control

Our turning strategy relies on a single contact between the palm of the robot’s left

hand and the outer rim of the valve. To avoid the need to move the feet while

turning, we further decided to apply only quarter-turns at a time, with the robot

periodically reaching for the top of the valve to start the motion again.

Walking Pattern Generator

First of all, the robot has to walk to the valve. To achieve this purpose, we used the

Walking Pattern Generator (WPG) from (Santacruz and Nakamura, 2012), which

allowed us to abstract the task to the 2D ground position of the Center-of-Mass

(COM). Using an interactive marker on the foot horizontal place, the operator eval-

uates the point-cloud data before inputting the goal location of the COM to the

WPG. Then, after a 10-second refresh interval, he or she can reiterate the process

until the robot is standing in front of the valve. Once a satisfactory location is

reached, we fix the foot locations on the ground and turn the valve with no addi-

tional call to the WPG.
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Inverse Kinematics

The kinematic transform of a contact marker with respect to the robot’s body frame

can be used to establish contact via Inverse Kinematics (IK) and position control.

For the former, we used RoKi (RoKi July 2015), a software library from the Mo-

tor Intelligence Laboratory (Osaka University). Given a set of end-effector poses

(i.e., position and orientation) and a COM position (maintained above the foot sup-

port area for stability), it could perform the whole-body inverse kinematics of our

34-DOF robot model within milliseconds.

Interpolation of reaching trajectories

Using the reduction from joint-space to work-space coordinates provided by the IK,

we only control the left hand pose for the rest of the task. When the operator sets

the contact marker on the valve, we compute two via-points from the current hand

pose to the contact pose. The first one lies between the hand and the valve. The

second one is closer to contact and has a z-coordinate above that of the contact point

in order for the left hand to make contact with a downward-pointing incidence

vector. Finally, a 20-second trajectory is interpolated between the four left-hand

poses (initial, via-point 1, via-point 2, contact) by using linear interpolation for the

end-effector position and spherical linear interpolation (Slerp) for its orientation.

Control of the Valve Turning Motion

Once contact is made, we generate the valve turning motion by turning the valve

manipulation marker in RViz and forwarding the resulting IK output (where the

left hand is bound to the contact marker) to the position controller. However, to

cope with the limited bandwidth constraint, we further cut the operator input to a

single turning angle. As depicted in Figure B.2, to execute of a quarter-turn, the

operator sets the desired angle (“Update” slider) and presses the command button.

The relative angle is then the only data sent to the robot field PC over the network,

at which point the latter will update its internal model of the valve and perform the

IK locally.
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B.3 Valve turning task

The framework we described has been implemented as part of the openth software

stack. We tested the valve-task software with an HRP4-R humanoid robot and a

steel valve mounted on a metal frame. (Another application of openth has been

reported by Ishiguro et al. (2015) for the car-driving task.) In the laboratory envi-

ronment, it took the operator 10 minutes to execute the task.

Position estimation errors accumulate during execution of the task. In the present

experiment, after reaching a third time for the top of the valve, the humanoid did

not properly establish contact. The operator could notice that the valve did not turn

with the hand (e.g., by looking at its rims in the point cloud view) and adapt to the

situation by translating or downscaling the wheel mesh in the OCS.

Contact state estimation ought to be done at the robot level. Torque-controlled

humanoids, or position-controlled ones with force-torque sensors in their wrist, can

estimate the contact force directly. The estimation is still possible with previous

generation humanoids like HRP4 where force-torque sensors are typically located

in the ankles. Yet, it is more involved as forces are only observed after propagation

along the kinematic chain.
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Software

pymanoid:
Backbone of the software stack described in Chapters 4-6. Features a cus-
tom numerical Inverse Kinematics (IK) solver, Jacobians and hessians for the
center-of-mass, ZMP and angular momentum, as well as the computation of
the gravito-inertial wrench cone using the Double-description method.

https://github.com/stephane-caron/pymanoid
(08e9544d24c3b3d02b7f5ab0e853ab7555dd59f3)4

manipulation_markers:
ROS package for manipulation tasks that we developed and used in Team Hy-
dra while preparing for the DARPA Robotics Challenge (see Appendix B. This
code is part of our controller for the valve turning task, which we demon-
strated in Caron and Nakamura (2015b).

https://github.com/stephane-caron/manipulation_markers
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openth
Software developed by Team Hydra while preparing for the DARPA Robotics
Challenge. My work in the team focused on the integration of the Inverse
Kinematics solver (Roki5 from Sugihara (2011)) with the visualization and
manipulation components. In particular, I developed the controller for the
valve turning task, which we demonstrated in Caron and Nakamura (2015b).

TOPP:
The Time-Optimal Path Parameterization library by Quang-Cuong Pham. Given
an input trajectory, TOPP finds its time-optimal retiming under a set of dy-
namic constraints, e.g., velocity limits, torque limits, and more generally any
constraint that can be put in quadratic form. See (Pham, 2014) for details.

https://github.com/quangounet/TOPP
(ef1688db4fc49b4dcba98e361696c9caadbe5631)4

AVP-RRT:
Implementation of the motion planners used in Chapter 2. The package in-
cludes a benchmarking framework (multi-processing, data logging and anal-
ysis tools) that we developed to compare our new planner to existing ones.

https://github.com/stephane-caron/rss-2013
(d3d9b50bb582c23a4ee83408b26bcede4d84469e)4

4 Revision number at the time of writing this manuscript.
5 http://www.mi.ams.eng.osaka-u.ac.jp/open-e.html
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2.1 Illustration of the extension routine of randomized planners. To grow

the roadmap toward the sample x′, the planner selects a number of

parents PARENTS(x′) = {P1, P2, P3} from which it applies the STEER(Pi,x′)

method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2 Single (A) and double (B) pendulums. Under torque bounds, these

systems must swing back and forth several times before they can reach

for the upright position, as depicted in (B) (lighter images represent

earlier times). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.3 Phase-space portrait of the roadmap constructed by RRT using the

second-order continuous (SOC1) interpolation. The planner found a

successful trajectory (red line) after 26,300 extensions. This planner

is probabilistically complete (Theorem 1) thanks to the fact that SOC1

curves satisfy Assumption 5. . . . . . . . . . . . . . . . . . . . . . . . 39
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2.4 Roadmap constructed by RRT after 100,000 extensions using the Bezier

interpolation. Reachable states are distributed in two major areas:

a central, diamond shape corresponding to the states that the plan-

ner can connect at any rate, and two cones directed towards the goal

(θ = π or θ = −π). Even after several days of computations, this

planner could not find a successful motion plan. Our completeness

theorem does not apply to this planner because Bezier curves do not

satisfy Assumption 5. . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.1 A: Illustration for Maximum Velocity Curve (MVC) and Concatenated

Limiting Curve (CLC). The optimal velocity profile follows the green

β-profile, then a portion of the CLC, and finally the yellow α-profile.

B: Illustration for the Switch Point Lemma. . . . . . . . . . . . . . . . 44

3.2 Illustration for step A (computation of the LC’s). Left: illustration for

case A1. A profile that crosses an α-CLC violates the α bound. Right:

illustration for case A3. . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.3 Illustration for step B: one can determine the maximum final velocity

by integrating forward from (0, ṡ∗beg). . . . . . . . . . . . . . . . . . . . 48

3.4 Illustration for the predicate IS_VALID: one can assess whether a final

velocity ṡtest is valid by integrating backward from (send, ṡtest). . . . . . 50

3.5 Illustration for AVP-RRT. The horizontal plane represents the configu-

ration space while the vertical axis represents the path velocity space.

Black areas represent configuration space obstacles. A vertex in the

tree is composed of a configuration (blue disks), the incoming path

from the parent (blue curve), and the interval of admissible velocities

(bold magenta segments). At each tree extension step, one interpolates

a smooth, collision-free path in the configuration space and propagates

the interval of admissible velocities along that path using AVP. The fine

magenta line shows one possible valid velocity profile (which is guar-

anteed to exist by AVP) “above” the path connecting qstart and qnew.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
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3.6 Performances of AVP-RRT compared to that of a state-space RRT. Left:

percentage of trials that have reached the goal area at given time in-

stants for τmax = (11, 7). Right: individual plots for each trial. Each

curve shows the distance to the goal as a function of time for a given

instance (red: AVP-RRT, blue: RRT-40). Dots indicate the time instants

when a trial successfully terminated. Stars show the mean values of

termination times. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.7 Performances of AVP-RRT compared to that of a state-space RRT. Left:

percentage of trials that have reached the goal area at given time in-

stants for τmax = (11, 5). Right: individual plots for each trial. Each

curve shows the distance to the goal as a function of time for a given

instance (red: AVP-RRT, blue: RRT-40). Dots indicate the time instants

when a trial successfully terminated. Stars show the mean values of

termination times. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.8 RRT, kNN-RRT and VIP-RRT ran over 40 instances of a double inverted

pendulum with torque limits (8 Nm on the first joint and 4 Nm on the

second one). The horizontal axis shows computation time, while the

vertical axis represents the number of successful planners (left) and

the distance to the goal area (right) averaged over all runs. . . . . . . 58

3.9 Swinging up a fully-actuated double pendulum. A typical solution for

the case (τmax
1 , τmax

2 ) = (11, 5) N·m, with trajectory duration 1.88 s

(see also the attached video). A: The tree in the (θ1, θ2) space. The

final path is highlighted in magenta. B: snapshots of the trajectory,

taken every 0.1 s. Snapshots taken near the beginning of the trajec-

tory are lighter. C: Velocity profiles in the (s, ṡ) space. The MVC is in

cyan. The various velocity profiles (CLC, Φ, Ψ, cf. Section 3.2.2) are in

black. The final, optimal, velocity profile is in dashed blue. The verti-

cal dashed red lines correspond to vertices where 0 is a valid velocity,

which allowed a discontinuity of the path tangent at that vertex. D:

Torques profiles. The torques for joint 1 and 2 are respectively in red

and in blue. The torque limits are in dotted line. Note that, in agree-

ment with time-optimal control theory, at each time instant, at least

one torque limit was saturated (the small overshoots were caused by

discretization errors). . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
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3.10 Illustration for the existence of an admissible velocity profile above an

approximated path in the proof of completeness for AVP-RRT. . . . . . 61

3.11 Approximation of a given smooth path in the proof of completeness for

AVP-RRT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.1 Two different contact modes. Left: a sphere-to-plane contact yields

a point positional constraint: one point on the link coincides with

one point on the surface. This constraint binds the three linear DOF

between the link frame and the environment frame, resulting in a

three-dimensional contact force. The three angular DOF are not con-

straint, thus there is no contact torque. Right: a surface-to-surface

contact yields a full positional constraint: the link and environment

frame coincide. All six relative DOF are constrained, resulting in a

six-dimensional contact wrench (force and torque). . . . . . . . . . . 66

4.2 Simple case of a block on table pushed by an external force fa. . . . . . 67

4.3 Friction cone at the contact pointCi with local contact frame (ti, bi,ni),

represented respectively alone (left), with the outer (middle) and in-

ner (right) linear approximations. (This figure is inspired from Fig. 1

in Trinkle et al. (1997).) . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.4 Projection of a 2D polygon by elimination of the x coordinate (red

interval Py) or of the y coordinate (blue interval Px). . . . . . . . . . 71

4.5 Contact in the surface plane. The physics of contact is a continuous

distribution of stress and pressure fields (illustrated on the left). We

show that, under Coulomb friction, this distribution is equivalent (in

terms of the resulting wrench) to contact forces lying in frictions cones

at the corners of the contact polygon (right). . . . . . . . . . . . . . . 74

4.6 Complete expression of the ZMP support polygon, accounting for the

complete contact stability condition (i.e., taking into account not only

roll and pitch, as is usually done, but also slippage and yaw rotations).

Most of these inequalities are redundant and can be eliminated once

the position of the COM is determined. However, in the general case

any of them can be saturated. . . . . . . . . . . . . . . . . . . . . . . . 86
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4.7 ZMP support area (in green) for the complete contact stability condi-

tion, i.e., taking into account translational and rotational friction. The

foot dimensions are that of HRP-4. The area was computed for a static

friction coefficient µ = 0.1 (icy surface) and a COM height of 0.8 m.

The polygon has eight edges; the other thirty-two inequalities of the

complete system (Figure 4.6) could be eliminated once the position of

the COM (red disc) was determined. . . . . . . . . . . . . . . . . . . . 87

4.8 Snapshots of the retimed motion. Total duration is 7.3 s. Time stamps

are shown below each frame. The motion stresses all components of

the wrench cone. The first segment stresses the pitch by moving the

COP forward. The second stresses the roll through arm motions. Mean-

while, the yaw component is stressed by chest-pitch motions. Finally,

the waist performs an elliptic motion (back and forth, up and down)

throughout the whole motion, thus stressing the translation of the con-

tact foot. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.9 Zoom on the contact forces computed by OpenHRP at the left foot.

Each thin purple segment corresponds to one force. Time stamps are

shown below each column. First row: retimed motion with CWC en-

forced. Second row: 10% acceleration of the motion, CWC is not

enforced. Around 4.2 s, the contact surface degenerates to a line con-

tact on the left edge of the foot. Third row: 15% acceleration of the

motion, CWC is not enforced. The contact surface degenerates to a

line before contact is lost and the humanoid falls. . . . . . . . . . . . . 90

5.1 Retimed trajectory profiles in the (s, ṡ) space. Maximum Velocity Curves

are depicted by dotted cyan and magenta lines. The dashed blue line

represents the initial trajectory (ṡ = 1) while the red curve corresponds

to the retimed trajectory. It may follow but never crosses the MVCs.

Shaded gray areas show the intervals where we disabled retiming, forc-

ing the retimed profile to go follow ṡ = 1. Blue and green dots indicate

discontinuity of the MVC and singular points, respectively. . . . . . . . 102

5.2 Time-lapse of the original and retimed trajectories. The interval be-

tween two frames is 3.5 s. Total durations are 53 s for the original and

24 s for the retimed trajectory. . . . . . . . . . . . . . . . . . . . . . . 103
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5.3 Execution of the planned motion by HRP-4 for climbing one step. The

height of the step is 24 cm. The motion is generated at low velocity,

which is the range of validity of our multi-contact stability criterion.

The total execution duration is 1 min 30 s. Time stamps (in seconds)

are indicated below each picture. . . . . . . . . . . . . . . . . . . . . . 107

5.4 View of the generated COM trajectory in the transverse plane. Consec-

utive support areas are represented by blue polygons while the stair-

case is in brown. Dotted red lines depict the COM trajectory. Note that

the sagittal vector is pointing rightward, so that the motion goes from

left to right. The unit of both axes is the meter. . . . . . . . . . . . . . 108

5.5 Testing robust static equilibrium. The robot right arm is supported by

the ledge while its right foot is supported by an inclined box. The

desired neighborhood around the gravity wrench is associated with

{g1, g2, g3, g4} = {(0.15, 0, g), (−0.15, 0, g), (0, 0.15, g), (0,−0.15, g)}. We

sampled one million random COM positions, those of which satisfy ro-

bust static equilibrium are depicted by a green dot. The aggregate of

green dots outlines the shape of the robust static equilibrium wrench

cone. The three images show views from the X, Y and Z directions

respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.6 Stair climbing motion where contact stability is checked using our

method. Time stamps are shown under each frame. The retimed mo-

tion is very fast as all underlying configurations are all statically stable.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.7 Execution of the multi-contact whole-body trajectory on a humanoid

robot in a physics simulator. Time stamps are written under each

frame. The dynamic part of the motion occurs between 15 s and 16 s,

where movements need to be fast in order to maintain contact stability.

This segment is dynamically but not quasi-statically stable: at least one

contact is lost when the motion is executed at lower velocities. . . . . 115
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6.1 Overview of the construction we propose. The ZMP support area, in-

cluding positive-pressure and frictional constraints, is computed in an

arbitrary virtual plane (here, above the robot’s head). For locomotion,

linearized pendulum dynamics are obtained by regulation of the an-

gular momentum. The shrinking of the support area incurred by this

regulation is fully taken into account. A whole-body controller based

on these developments finally enables multi-contact locomotion for ar-

bitrary environments. . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

6.2 Example of computed support area in the dual-cone case. There are

three contacts in total. Contacts 1 and 2 are made with the same

horizontal surface and correspond to the feet of the robot. Contact 3

is located one meter above the others and made with a vertical surface

in front of the robot. The virtual plane is taken horizontal and 50 cm

above the feet’s plane. Polygons P+ and P− used in the construction

process are drawn in purple. Blue lines connect the vertices generated

by contact 3. They illustrate that a single surface contact can yield

vertices in both P+ and P− at the same time. . . . . . . . . . . . . . . 129

6.3 Geometric construction of the ZMP support area in the polygonal case.

Ray generators of friction cones (red lines) are traced until they inter-

sect the virtual plane, yielding points inside the support area (black

dots). The support area (in green) is the convex hull of this set of

points. The blue polygon corresponds to the individual support poly-

gon of the right contact. These polygons can be used for an alternative

construction of the ZMP support area suited to the problem of contact

planning. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
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6.4 Snapshots of the motion generated by ZMP control of the COM from

above under LP regulation. The scenario is designed so that the robot

has to put its hand on the high platform (in the background) and right

foot on the opposite tilted platform in order to perform an ample swing

of the left leg that is otherwise impossible. In these simulations, the

ZMP plane is taken one meter above the robot’s COM. Green polygons

in the plane above the robot’s head are the respective support areas

for each snapshot. The (virtual) linear pendula between ZMPs (points

in the support polygons) and their attached COM are depicted by gray

wires. The correctness of our dynamic-stability criterion was cross-

validated by explicit computation of contact forces at each time instant

(arrows at the corners of each contact surfaces). . . . . . . . . . . . . 140

6.5 Situation where the ZMP support area (green stripes) is smaller than

the convex hull of ground contact points (blue polygon). The robot has

its two feet (transparent red boxes) set one meter apart on a horizontal

floor (in gray). Its COM is 50 cm above ground, and the friction at

contact is µ = 0.5. The ZMP cannot be located at the corner Ck of the

convex hull, as it would imply that the contact force exerted at this

point (in magenta) lies outside the friction cone Ck (in red). . . . . . . 145

A.1 Extension toward a candidate COM of a four-link stance with four non-

coplanar contacts: two rectangular feet and two point sticks. Contact

points and surfaces are drawn in black. The blue polygon represents

the stance’s support area. The green cone depicts the “eclipse” of the

polygon by the COM. It corresponds to the positions at which the stick

S2 can be put so that the resulting stance stabilizes the candidate COM. 154

A.2 HYDRA humanoid robot. Left: geometric model in false colors. Mid-

dle: kinematic structure of the robot. Right: picture of the real robot.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

A.3 Stance sequence generated by our planner. A stick-carrying variant of

the HYDRA humanoid evolves on a randomly-generated rubble-field.

Our planner’s state space is the two-dimensional plane of horizontal

COM position. In the sequence above, each stance results from an

extension toward a COM sub-goal. . . . . . . . . . . . . . . . . . . . . 158
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A.4 Exploration of the RRT in the horizontal plane for the stance sequence

depicted in Figure A.3. COM positions and trajectories are represented

by green dots and lines, respectively. The green star corresponds to the

starting COM position. Contact locations, either rectangular surfaces

or stick points, are drawn in red while the blue areas correspond to su-

perposed support polygons (plotted with transparency for readability).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

B.1 Manipulation marker for a wheel mesh model. Control handles for the

six degrees of freedom (translation and rotation) are depicted in red,

green and blue for the x-, y- and z-axis respectively. . . . . . . . . . . 161

B.2 Interface of the Operator Control System with a model of the HRP4-R

humanoid robot. Its head has been replaced with an adjustable plate

(in red) for the laser-range sensor frame. Panels on the left: default

“Displays” from RViz and a custom panel for IK control. Panels on

the right: Ghost model, Walking, Language and Wheel. The ghost

model is used to preview IK results before execution on the real robot.

Walking markers can be used to control the Walking Pattern Gener-

ator (Santacruz and Nakamura, 2012). The language panel is used

to query a large human-behavior database for postures (Takano and

Nakamura, 2008). Finally, the wheel panel allows to add/remove the

valve marker, update its scale, send the reaching and turning com-

mands. It displays two sliders: one for the estimate of the current

wheel rotation, and the second for the desired turn angle. (Points

above the robot head are artifacts from the sensor.) . . . . . . . . . . 162
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