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Stair climbing is still a challenging task for humanoid robots, especially in unknown environ-
ments. In this paper, we address this problem from perception to execution. Our ¯rst contri-

bution is a real-time plane-segment estimation method using Lidar data without prior models of

the staircase. We then integrate this solution with humanoid motion planning. Our second

contribution is a stair-climbing motion generator where estimated plane segments are used
to compute footholds and stability polygons. We evaluate our method on various staircases.

We also demonstrate the feasibility of the generated trajectories in a real-life experiment with

the humanoid robot HRP-4.

Keywords: Plane segmentation; humanoid stair climbing; static stability.

1. Introduction

The advantage of a humanoid robot originates from its human-like properties,

namely, of shape, size, and mass. They ease non-verbal and intuitive communication
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with the humans in the daily human-life scenes. The advantage is not only for

communication, but also for automation in factory works. They allow the humanoid

robots to accept the ordinary human settings and environments. The extreme cases

would be the automated or teleoperated works in the human environments in life

hazards after accidents and disasters. An advanced humanoid robot in the future will

join rescue operations or go into the hazardous environments for the circumstances of

accidents. The humanoid will do its best to use the environments made for the

humans, such as the stairs, doors, tables, even ladders even if they are half-broken in

collapsed buildings. The DARPA Robotics Challenge was a symbolical event held in

June 2015 highlighting such a future advantage of humanoid robots.

Previous works on humanoid stair climbing1,2 estimate geometric features of

staircases and match them with prior models to achieve localization and motion

generation. As they rely on prior models, such frameworks cannot be used when the

number of steps or the shape of the staircase are determined at execution time. To

achieve autonomous stair climbing in unknown environments, the robot needs the

ability to estimate the geometry of the staircase, which implies, in particular, plane

segment estimation. Reference 3 proposed a real-time staircase recognition method

for stair climbing without prior models. However, their perception method su®ers

from the noise of stereo sensors, and they only executed their motions on small-size

humanoid and staircases. In this paper, we estimate staircase plane segments,

i.e., rectangular areas located in space, from point clouds data (PCD) obtained from

a Lidar sensor. The reconstructed plane segments are subsequently sent to the mo-

tion generator.

Previous works on humanoid motion planning focused on horizontal, °at ground

settings.4,5 However, the stability of bipedal climbing patterns is delicate. Tradi-

tional methods to ensure such stability on °at ground include the well-known zero

moment point (ZMP),6–9 which assumes in¯nite friction and a plane horizontal

ground. However, there are still problems to apply traditional motion generation and

stabilization methods to non°at multi-contact scenarios like stair climbing. To tackle

this issue, we use a general static-stability criterion10 which takes into account both

friction and noncoplanar surfaces and integrates it within a quasi-static motion

generator.

The contributions of this paper are therefore:

. a real-time plane segment estimation method for Lidar data without prior model,

. a stair-climbing motion generator using the reconstructed plane segments and a

general static-stability criterion.

As shown in Fig. 1, we integrate both of these solutions into an e±cient humanoid

locomotion framework that we validate in a stair-climbing experiment by the HRP-4

humanoid robot.

The rest of the paper is organized as follows. Section 2 introduces related works,

while Sec. 3 describes the point clouds acquisition setup. Our plane-segment
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estimation method is described in Sec. 4 and evaluated in Sec. 5. Our climbing

motion generator is described and evaluated in experiments in Sec. 6.

2. Related Works

2.1. Plane segmentation

Plane segment estimation and surface reconstruction with depth sensors11,12 are

most widely studied families of methods for unknown environment perception. Point

normal is one of the essential features of 3D point clouds. Rusu introduced a normal

estimation framework in Ref. 13, in which point normal is computed by analyzing the

eigenvectors and eigenvalues of a covariance matrix created by its k-nearest neigh-

bors. The computed normal vectors may have two opposite orientations. If the point

clouds are captured from a single camera (viewpoint), the orientation towards

to viewpoint is chosen. This framework has the limitation that the edge and

cornerpoints' normals lose their sharp features. Moreover, in Ref. 14, these boundary

regions are estimated based on the di®erence of estimated normals with di®erent

neighbor sizes. Another normal estimation method in Ref. 15 achieved real-time

performance by building integral images of input PCD. However, it was designed for

organized PCD, which assumes data structure is known. This condition limits its

application on some sensors.

In the work of Gutmann et al.16 a plane-segment estimation method is proposed to

grow segments from straight scan lines. This plane estimation method is extremely

fast since most input points are processed only in line-segmentation phase. However,

plane normals which are important for biped robot locomotion generation are not

Fig. 1. Experimental setting of the paper. Motion planning in OpenRAVE with reconstructed surfaces

(left) and real case execution on HRP-4 (right).
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estimated. Another work of Rusu et al.17 used random sample consensus (RANSAC)

to generate polygons upon point clouds which are represented by small volumes,

called cells or voxels. RANSAC is fast but tends to combine small local segments into

big slopes, especially in large clutter scenes. In recent works, Papon et al.18 extends

an over-segmentation approach to real-time stereo data processing. This method

cluster voxels with same features, such as voxels' position, color and normal features,

to \supervoxels". Supervoxels decrease PCD size complexity, real-time plane seg-

mentation is achieved in Ref. 18 by using supervoxels as input. However, this method

is designed for dense RGB-D data. In large scenes the algorithm su®ers from slow

space dividing.

2.2. Humanoid stair climbing

Osswald contributed a series of works in autonomous stair-climbing system.1,2,19 In

these works, they estimated plane segments of a spiral stair with Lidar sensor and

estimated their edges and corners with the RGB camera. Robot posture identi¯-

cation is done with multi-sensor fusion of inertial measurement unit (IMU), joint

sensor, force sensor, RGB camera and laser scanner. This system succeeds to ful¯ll

an autonomous climbing of hard spiral stair with a Nao robot. Multi-sensor fusion

provides more information for environment learning and contributes precise robot

posture estimation, but involves more computations and the sensibility to noise.

Furthermore, this line of work assumes that the full environment model is known

to the robot, thus limits its application in unknown and changing environments.

Gutmann's stair climbing3 combined stair recognition and motion planning, in

their work. Stereo sensors are used to estimate the back and front edge of each

staircase and ¯nal stair model is merged from multi-frame. Due to the noise of

stereo sensors, their stair segments are not precious, ¯nally, a small-size humanoid

robot climbed a short staircase model (3 cm high each step) by using the merged

stair model. However, there is no general stabilizer in his motion generator. In this

paper, staircase plane segments are estimated and directly used for planning. The

general stabilizer is involved to make a real-size humanoid robot to climb a real

stair.

Traditional methods to ensure the stability of the robot (i.e., the dynamic balance

of gravity and inertia forces by contact forces) include the well-known ZMP condi-

tion.6–8 On horizontal ground and assuming in¯nite friction, a motion is dynamically

balanced if and only if the ZMP lies inside the convex hull of contact points, which is

called the support area. Control laws focus on maintaining the measured ZMP inside

this support area while compensating for motion and force disturbances.4,5 However,

the concept of support area is still unclear in non-horizontal settings like stair

climbing. Some extensions to \virtual" ZMPs have been proposed4,9 yet they were

not applied to non°at settings. In this paper, we deal with this limitation by applying

the general center-of-mass (CoM) static-stability polygon,10 which is valid in general
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non°at settings. We show how it successfully applies to non°at stair-climbing sce-

narios when the ZMP is maintained close to the CoM.

3. Point Clouds Acquisition

In this paper, the environment information is obtained from PCD by a Hokuyo

UTM-30LX-EW 2D laser scanner. Comparing with high-frequency RGB-D stereo

sensors, e.g., Microsoft Kinect, laser scanner has the superiorities of a larger ¯eld of

view, further detectable range and suitability to bad lighting conditions. The chosen

Hokuyo Lidar has 270� ¯eld of view, comparing with 57.8� of Kinect. Therefore, the

robot can see more features without turning the neck, which is important for real-

time mapping and perception. Kinect works from about 0.6m to 4m, while, Hokuyo

UTM30 works in 0.1m to 60m with �1% error. The baseline limitation makes a big

problem for legged robot stair climbing. If the robot cannot see the staircase or

obstacles in front of its feet, the stepping has to be ¯nished without visual guidance.

In our case, Hokuyo scanner can help the robot see the stair close to its standing feet

accurately. It is also a reason why we used Hokuyo Lidar that it could provide robust

measurements even under the direct sunlight, while Kinect showed signi¯cant dis-

turbances under the sunlight.

Hokuyo UTM-30LX-EW returns a raw of points with 0.25� resolution every

25ms, to achieve dense 3D point clouds, the row data are assembled according to the

Fig. 2. A Hokuyo scanner actuated by a dynamixel MX-64 servo mounted on HRP-4's neck. When we
combine row data to 3D PCD, robot neck joint and the servo's base (the read squire) are static, and the

tilting angle of the center of scanner (the green point) respect to actuator base is accurately recorded by the

actuator.
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tilting angle of the scanner. This assembling processing limits the frame frequency. In

Ref. 19, the assembled 3D PCD is noisy with an error up to 5 cm, and the author

pointed out that the error mainly comes from shaking and the estimation of scanner's

posture when robot tilts its head. To overcome this problem, our scanner is actuated

by dynamixel MX-64 servo-actuator which is ¯xed on the robot neck's joint. As

shown in Fig. 2, the robot body keeps static when the scanner is tilting to make a 60�

scan, and the row tilting angle with respect to actuator's turning axis is recorded

accurately by dynamixel MX-64. Note that, parameters such as tilt angle and

pitching speed can be tuned to access dense or sparse PCD.

4. Unknown Environment Perception

In this paper, the task is set to climb stairs in unknown environments without

moving obstacles, therefore, the goal of visual processing phase is to estimate suitable

surfaces for robot climbing. Here, suitable means big enough for feet size and safe to

step on. Although, we can estimate and reconstruct all the surfaces of the environ-

ment, to save time cost, we focus on the estimation of horizontal plane segments of

the staircases, which are suitable for robot's feet.

Aiming at real-time perception, input PCD is ¯ltered as much as possible, thus,

we de¯ne three ¯lters as follows:

Filter (1), we ¯lter the points on steeps which are not tolerated to our robot,

Algorithm 1 line [5–7].

Filter (2), we ¯lter the sparse point cloud since they are not reliable, Algorithm 1

line [11–14].

Filter (3), we ¯lter the isolated supervoxels since we do not consider about small

obstacles in this setting.

The °owchart of our method is given in Fig. 3, from left to right, the assembled 3D

PCD is input, and then Filters (1) and (2) are called to ¯lter horizontal PCD out,

after these ¯lters, we cluster points on plane segments. Then, the boundaries of the

staircases are identi¯ed as rectangles, which are used as input for motion planning.

Finally, we execute the climbing motion on HRP-4 robot.

4.1. Normal estimation and filtering

The normal estimation and ¯ltering algorithm is shown in Algorithm 1. In our case,

the normals of PCD input are computed (function COMPUTE NORMAL) by using the

algorithm from.13 In GET CENTER, the surface normal is estimated by analyzing of the

eigenvectors and eigenvalues of the covariance matrix created from the nearest

neighbors of the query point. In this method, neighbor size is an important factor to

the ¯nal performance. Large neighbor size leads to smooth normals changing in

boundary regions and costs more computing time, while small neighbor size may lead

to wrong normal estimation. The performances of di®erent neighbor sizes will be

evaluated in Sec. 5.
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Aiming at real-time surface estimation and reconstruction, the useless point

clouds should be ¯ltered out. In Filter (1), we compare point normals with gravity

vector g, which is obtained from acceleration sensor when the robot is statically

standing on the ground. Then, we de¯ne normal distance Dn, and ¯lter the points by

threshold T which is related to the cosine of an acceptable slope angle, as shown in

Algorithm 1 lines 8–11. Then comes Filter (2), in which the PCD is divided into small

voxels with dimension v, and the voxels that contain not enough points are ¯ltered

Fig. 3. Flowchart of our method: from left to right, we apply Filters (1)–(2) and supervoxel clustering

in (a), in which we ¯ltered non-horizontal plane segments and cluster adjacent points. After getting

the labeled PCD, Filter (3) and staircase plane segment estimation are done within (b). The output of (b)

are the boundaries of the staircases (red rectangles). Then, in (c), we apply the foothold planner, and in
(d), the joint angle trajectories are generated from motion generator, ¯nally, they are sent to robot

controller.

Algorithm 1. Normal Estimation and Filtering

Input: Point cloud data P, voxel resolution v, neighborhood threshold publisher=SAGE
Publications nt, normal distance threshold T , distance function Dn, gravity vector g
Output: Voxel center point cloud C

1: g ← acceleration sensor
2: for each point pi ∈ P do
3: ni ← compute normal(pi)
4: di ← Dn(ni,g) = 1 − ni(pi) · g
5: if di < T then
6: delete pi

7: end if
8: end for
9: Ov ← build octree(v, P)

10: Clear C

11: for each voxel vi ∈ Ov do
12: if adjacency size of vi > nt then
13: C ← C ∪ {get center(vi)}
14: end if
15: end for
16: return C
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out as sparse points. We take the point which is closest to the space volumes' mean

coordinate as representative point. The sets of ¯ltered point clouds P is shown in

Fig. 4(b) and 4(d).

4.2. Supervoxel clustering

Similar to other methods, we compute a small number of representative points to

reconstruct estimated surfaces. We use supervoxel centers as representative points.

To cluster supervoxels, we need to measure the similarity between point clouds. Our

distance function D measuring spatial information and local plane's normal feature is

de¯ned as:

Dðvi; vjÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�
Dsðvi ; vjÞ2
3R2

seed

þ ð1� �ÞDnðvi; vjÞ2
s

; ð1Þ

where vi; vj are voxels, and Rseed is seed resolution which determines searching scale

and in°uence the size of the ¯nal supervoxels. � 2 ð0; 1Þ is in°uence factors of the

Euclidean distance Ds and normal distance Dn. Dn is de¯ned as:

Dnðni;njÞ ¼ 1� ni � nj : ð2Þ

Fig. 4. Surface reconstruction process. (a) Original PCD of a three-level staircase. (b) Estimated plane

segments in di®erent colors. (c) Reconstructed surfaces with supervoxels of scene (a). (d) Original PCD of
the real staircases. (e) Estimated horizontal planes of the real stair. (f) Reconstructed surfaces of (c).
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The clustering in our method is a k-means similarity process. We use the voxel

centers as inputs for supervoxels clustering. The octree Os (Algorithm 1) is built with

resolution Rseed, and the center points of its voxels are called \seeds". We then add

voxels from P one-by-one, attaching them to the closest seed supervoxel center in Os

according to the distance measure D. This iteration keeps on going until the

boundary of each searching volume is reached or there is no neighbor left.

Supervoxels expand synchronously, and the center of each supervoxel is updated

as the mean of all the members after each expansion until there is no voxel left. Then,

we cluster adjacent supervoxels. Clusters that contain too few voxels are removed

since they represent local plane segments smaller than the robot's feet (Filter (3)).

Finally, we identify the rectangular boundaries of each plane segment.

4.3. Plane fitting boundary estimation

We apply RANSAC to the whole supervoxel point cloud to ¯t a set of plane seg-

ments. However, some of them connect points belonging to di®erent steps of the

staircase. We ¯lter them out as follows.

We chose to represent plane segments as vectors V ¼ ð�x;�y;�z), where �x;

�y and �z are the scales of the segment on x-; y- and z-coordinates, respectively.

Noting that the points belonging to a step plane segment should all have roughly the

same z-coordinate (�z � 0), we ¯lter out the segments output by RANSAC for

which�z is bigger than a threshold ", which we chose as " ¼ 3 cm. Next, as staircase

plane segments should be represented by rectangles of similar widths and lengths, we

cluster the remaining plane segments in the ð�x;�yÞ 2D-space using the Euclidean

distance. We identify the biggest resulting cluster as the staircase, i.e., the set of

plane segments corresponding to the staircase steps.

Take the scenes depicted in Fig. 4 as an example. The original input PCDs of a

three-level staircase and a real stair are shown in Fig. 4(a) and 4(d). Meanwhile,

Fig. 4(b) and 4(e) indicate the output of ¯ltering supervoxel clustering. Only hori-

zontal planes which are bigger than robot's feet are kept. Small obstacle planes

and steep slopes are removed. Final reconstructed staircase surfaces are shown in

Fig. 4(c) and 4(f). Note that only the ¯rst-level stairs are well represented since they

are near to get dense point clouds. While the higher ones which are partly estimated

will be fully reconstructed after the robot stepping on the lower ones.

5. Plane Segmentation Evaluation

Detection of horizontal or near-horizontal plane segments for foot placement is

crucial for humanoid robots. Therefore, we take estimated areas of the nearest

staircase and the time cost as algorithm performance. We test these performances

with di®erent parameter values in the scenarios described in Fig. 4. Although, there

are many parameters in clustering phase, the neighbors size for normal estimation

has the biggest e®ect on whole processing time. To test this property, we take PCD of

two scenarios and process them with di®erent k (the number of k-nearest neighbors).

Humanoid Stair Climbing

1650022-9



The staircase used in Experiment 1 (Exp. 1) has three levels with 50 cm long, 20 cm

high and 27 cm wide, which is hard enough for HRP-4 robot since its foot is a 14 cm

width and 24 cm length square. Experiment 2 (Exp. 2) is taken in a real staircase

scene, which has 11-levels staircases, each level is 123 cm long and 26.5 cm wide and

18 cm high. The ¯xed parameters are listed in Table 1. The computer used in these

experiments has a 4 cores Intel(R) Core(TM) i7-4710MQ CPU@2.50GHz, 15GiB

system memory, all the data is average value of 100 frames. The normal estimation

phase is done with multiple thread computation.

Table 1. Parameters used in experiments.

Seed resolution (m) Rseed 0.1

Voxel resolution (m) v 0.02
Normal distance threshold T 1þ cosð15�Þ
Distance impact factor � 0.2

Limit voxels number nt 5

(a)

(b)

Fig. 5. In chart (a), solid lines show the estimated area (percent value of real-stair size) and the dotted
lines show the whole processing time with di®erent neighbor size k. Red lines is about real staircases

scenario, and blue lines is about the three-levels stair. (b) Shows the time cost (ms) distributions of the two

experiments when k ¼ 10.
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See Fig. 5(a), dotted lines show the time costs of experiments when neighbor size k

ranges from 5–25, while solid lines illustrate estimated area of the ¯rst step. The

percent value of estimated area p is computed as follows:

p ¼ a

A

X
i2segments

ni; ð3Þ

where ni is the number of voxels included in the estimated plane segment i, a is voxel

area (4 cm2), while A is the real area of the staircase. Note that, here we only talk

about the estimated area of the ¯rst step which is nearest to the robot, the higher

steps will be reconstructed after the robot climbing to the lower ones. Blue lines are

about Exp. 1, and red lines are about Exp. 2. As expected, larger neighbor size costs

more normal estimation time, and we observed experimentally that k ¼ 10 was the

best compromise between estimated area and computation time. Figure 5(b) shows

the distribution of time cost when k ¼ 10. As seen, the normal estimation time

accounts more than supervoxel clustering. The yellow part is steep slope ¯ltering

phase. Clustering costs less in Exp. 2, since its space is smaller than Exp. 1, which is

taken in a larger working room (11� 7� 3 m). According to ¯lters setting, walls and

ceilings are removed, but ground plane segments are kept, so that around 190

supervoxels clustered in Exp. 2 compared with 550 in Exp. 1.

Overall, considering about time cost and estimated area, neighbor size is chosen as

10 results plane segmentation phase costs around 100 ms per frame. The fact that our

algorithm applies directly (with the same set of parameters) to di®erent staircase

shapes and sizes (Exps. 1 and 2) and for various robot postures suggests that it is

robust for real-case applications.

6. Generation of Stair-Climbing Motions

6.1. Motion generation

In our setup, the humanoid robot HRP-4 starts with both feet parallel in front of the

staircase. The whole stair-climbing motion is decomposed step-by-step, see Fig. 6,

each step being decomposed in ¯ve segments:

(1) Transfer the CoM above the ankle of the left foot.

(2) Move the right foot to its target pose, making contact.

(3) Move the CoM above the contact polygon of the right foot.

(4) Lift the CoM while moving the left foot to its ¯nal pose.

(5) Bring the CoM to the middle of the support area.

For each segment, a linear trajectory is interpolated for the CoM and, if appropriate,

for the pose of the free foot. The footholds are located at the middle of the recon-

structed plane segment, i.e., their x (sagittal) coordinate is chosen in the middle of

the segment, while their y (coronal) coordinate is constant for each foot (the robot is

walking straight). From the CoM and free link trajectories, a whole-body trajectory
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t 7! qðtÞ is computed using a QP-based IK tracker,20 which minimizes a combined

objective function under linear constraints. In our setting, we used the following:

Objective function:

(1) CoM deviation (weight wCoM ¼ 1).

(2) Free foot pose deviation (weight wfree ¼ 0:2).

(3) Deviation of the upper-body degrees of freedom from a reference pose (weight

wref ¼ 0:001). This term was added to prevent the robot from accidentally

touching the following staircase steps.

Constraints:

(1) Kinematic contact constraints Jiq
: ¼ 0; with Ji the Jacobian of the ith-contact.

(2) First-order velocity regulation

q
: � minðq:max;Kðqmax � qÞÞ;

where q
:
max is a ¯xed maximum velocity, K is the DOF-limit velocity gain and

qmax speci¯es the upper joint limits of the robot (lower joint limits are enforced

similarly).

Fig. 6. Motion generated by the planner in simulations. Reconstructed plane segments (in yellow) are

used to calculate footholds (green boxes), which are in turn used as end-e®ector positions for the left and
right foot. The motion is ¯nally generated by simultaneous tracking of the CoM and feet desired positions

using inverse kinematics with a weighted cost function.
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We enforce that the ZMP stays close to the CoM through small values of q
:
max and

of the regularization term in the objective function. The CoM trajectory is itself

interpolated inside static-stability polygons.

6.2. Static-stability polygons

When walking on a horizontal °oor, the static-stability condition for a biped is that

its CoM lies inside the support polygon, that is the convex hull of ground contact

points (in this case it coincides with the ZMP support area). When contact surfaces

are not coplanar, this polygon still exists but its computation is more involved. In

Ref. 10, the authors proposed a recursive polygon expansion method; we chose a

di®erent approach based on the double-description method, which we will now see in

detail.

According to Ref. 21, and assuming the robot has enough actuation power (this

assumption is checked later on in the OpenHRP dynamics simulator), the equations

of motion for a humanoid robot can be written as:

XK
i¼1

fi ¼ mðp::G � gÞ; ð4Þ

XK
i¼1

pi � fi þ ¿i ¼ mpG � ðp::G � gÞ þ L
:
G ; ð5Þ

wherem is the total mass of the robot, pi is the ¯xed position of the ith-contact frame

(the rotation of which is assumed to be the identity), pG is the position of the CoM,

wi ¼ ðfi; ¿iÞ is the resultant contact wrench applied by the environment at the ith-

surface contact, and LG is the angular momentum computed with respect to the

CoM G. The right-hand side of the equations above is known as the gravito-inertial

wrench. These equations are coupled with the kinodynamic contact constraints:

. Kinematic: The ith-contact frame is stationary with position pi and orientation

matrix Ri equal to the identity.

. Dynamic: Each contact wrench wi belongs to a polyhedral convex cone known as

the contact wrench cone (CWC),22 whose formula depends on the geometry of the

ith-contact area.

For rectangular contact surfaces (such as a humanoid foot) and approximating

friction cones by four-sided friction pyramids, the CWC consists in 16 complemen-

tarity inequalities applying to the contact wrench wi. It is a minimal complete

contact condition (see Ref. 22 for details). Thus, since all ðfi; ¿iÞ lie in polyhedral

convex cones and Eqs. (4) and (5) are linear, these two equations can be equivalently

rewritten in terms of the gravito-inertial wrench:

Hstabðp1; . . . ;pK Þ
p
::
G � g

pG � ðp::G � gÞ þ L
:
G=m

" #
� 0;
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where the matrixHstab only depends on the contact positions pi . In the case at hand,

we chose to generate so-called statically stable trajectories, i.e., enforcing low accel-

erations in order to neglect the terms p
::
G and L

:
G in the formula above. Under this

approximation, the inequality becomes H 0
stabðp1; . . . ;pK ÞpG � 0 after reduction of

the constant terms. It can be shown from Eqs. (4) and (5) that this inequality always

de¯nes a right cylinder with a polygonal basis in the transverse plane,10 known as the

static-stability polygon. This polygon can be computed using e.g., a recursive poly-

tope projection algorithm10 or the double-description method.23 We chose the latter.

For more details, the source code used in this experiment is available at Ref. 20. A

view of the transverse plane is shown in Fig. 7.

Because, we enforce slow velocities and keep the ZMP close to the CoM, we do not

need to check the stability condition at each time instant: each segment has a sta-

tionary matrix H
ðiÞ
stab, which makes stability checking straightforward: when inter-

polating the linear CoM trajectory for the segment i, su±ces to check whether its two

extremities p
ð0Þ
G and p

ð1Þ
G lie in the support polygon, i.e., H

ðiÞ
stabp

ðjÞ
G � 0 for j ¼ 0; 1.

6.3. Execution on HRP-4

Figure 8 shows the execution of the motion on the real robot. A complete video of the

experiment can also be found at Ref. 20. Compared to the simulation environment,

we needed to perform an additional ¯tting of the CoM coordinates at the single-

support postures. The reason for this tuning is that, as the motion deals with non-

coplanar surfaces, we could not use HRP-4's stabilizer (which assumes all contacts

are made with a horizontal °oor). A general solution to avoid this would be to

Fig. 7. View of the generated CoM trajectory in the transverse plane. Consecutive support areas are
represented by blue polygons while the staircase is in brown. Dotted red lines depict the CoM trajectory.

Note that the sagittal vector is pointing rightward, so that the motion goes from left to right. The unit of

both axes is the meter.
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develop a stabilizer that takes into account the static-stability polygon (rather than

the traditional convex hull of ground contact points).

6.4. Specificities of stair climbing

We observed that, to climb a complete staircase in the absence of obstacles, the robot

only needs to plan two sequences of footsteps: one to go from the initial con¯guration

to the ¯rst staircase step, and the other to go from the ¯rst to the second staircase

step. The latter can then be repeated for each pair of consecutive steps until the robot

has fully climbed the staircase. In this regard, stair climbing is similar to walking on a

horizontal °oor: repetitions in the structure of the environment can be leveraged by

generating a corresponding repeatable motion pattern, that is to say, a gait.

7. Conclusion

Multi-contact motion is the essential feature of the humanoid robots. Even walking

in the daily human-life or factory environments needs to search and optimize foot-

print positions. It is not easy in the cluttered environments of outdoors or even

indoors after accidents. Finding plane segments for the candidates of footprints is the

crucial technology. The plane segmentation will also be necessary to ¯nd the position

of hand prints for body supports in the more critical situation.

This paper proposed to use the supervoxel plane segmentation to reduce the

computational cost taking account of the feature of Lidar point cloud data. The

implemented results showed that the plane segmentation of the stair environments

was done at 10 Hz by Intel Core-i7 PC.

Fig. 8. Execution of the planned motion by HRP-4 for climbing one step. The height of the step is 24 cm.

The motion is generated at low velocity, which is the range of validity of our multi-contact stability

criterion. The total execution duration is 1 min 30 s. Time stamps (in seconds) are indicated below each

picture. A complete video of the experiment can be found at Ref. 20.
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The supervoxel plane segmentation was applied to stair-climbing motion gener-

ation of a humanoid robot, HRP-4. The motion was generated according to the

previous work of the authors by using the gravito-inertial wrench and the support

polygons taking the frictional inequality-constraints into consideration. In the im-

plementation to HRP-4, the quasi-static assumption was made for conservativeness

because of the weak actuator speci¯cation of the humanoid robot. The humanoid

robots could successfully make stair climbing by the generated motion planned based

on the computed plane segments.
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