
Admissible Velocity Propagation : Beyond Quasi-Static

Path Planning for High-Dimensional Robots

Quang-Cuong Pham1, Stéphane Caron2,

Puttichai Lertkultanon1, and Yoshihiko Nakamura2

1School of Mechanical and Aerospace Engineering, NTU, Singapore
2Department of Mechano-Informatics, University of Tokyo, Japan

September 29, 2016

Abstract

Path-velocity decomposition is an intuitive yet powerful approach to address
the complexity of kinodynamic motion planning. The difficult trajectory plan-
ning problem is solved in two separate and simpler steps : first, find a path in
the configuration space that satisfies the geometric constraints (path planning),
and second, find a time-parameterization of that path satisfying the kinodynamic
constraints. A fundamental requirement is that the path found in the first step
should be time-parameterizable. Most existing works fulfill this requirement by en-
forcing quasi-static constraints in the path planning step, resulting in an important
loss in completeness. We propose a method that enables path-velocity decomposi-
tion to discover truly dynamic motions, i.e. motions that are not quasi-statically
executable. At the heart of the proposed method is a new algorithm – Admissible
Velocity Propagation – which, given a path and an interval of reachable velocities
at the beginning of that path, computes exactly and efficiently the interval of all the
velocities the system can reach after traversing the path while respecting the sys-
tem kinodynamic constraints. Combining this algorithm with usual sampling-based
planners then gives rise to a family of new trajectory planners that can appropri-
ately handle kinodynamic constraints while retaining the advantages associated with
path-velocity decomposition. We demonstrate the efficiency of the proposed method
on some difficult kinodynamic planning problems, where, in particular, quasi-static
methods are guaranteed to fail 1.

1 Introduction

Planning motions for robots with many degrees of freedom and subject to kinodynamic
constraints (i.e. constraints that involve higher-order time-derivatives of the robot con-
figuration [Donald et al., 1993, LaValle and Kuffner, 2001]) is one of the most important
and challenging problems in robotics. Path-velocity decomposition is an intuitive yet
powerful approach to address the complexity of kinodynamic motion planning : first,

1This paper is a substantially revised and expanded version of Pham et al. [2013], which was presented
at the conference Robotics: Science and Systems, 2013.

1

find a path in the configuration space that satisfies the geometric constraints, such as
obstacle avoidance, joint limits, kinematic closure, etc. (path planning), and second,
find a time-parameterization of that path satisfying the kinodynamic constraints, such
as torque limits for manipulators, dynamic balance for legged robots, etc.

Advantages of path-velocity decomposition This approach was suggested as early
as 1986 – only a few years after the birth of motion planning itself as a research field – by
Kant and Zucker, in the context of motion planning amongst movable obstacles. Since
then, it has become an important tool to address many kinodynamic planning prob-
lems, from manipulators subject to torque limits [Bobrow et al., 1985, Shin and McKay,
1986, Bobrow, 1988], to coordination of teams of mobile robots [Siméon et al., 2002,
Peng and Akella, 2005], to legged robots subject to balance constraints [Kuffner et al.,
2002, Suleiman et al., 2010, Hauser et al., 2008, Escande et al., 2013, Hauser, 2014,
Pham and Stasse, 2015], etc. In fact, to our knowledge, path-velocity decomposition
[either explicitly or implicitly, as e.g. when only the geometric motion is planned and
the time-parameterization is left to the execution phase] is the only motion planning
approach that has been shown to work on actual high-DOF robots such as humanoids.

Path-velocity decomposition is appealing in that it exploits the natural decomposition
of the constraints, in most systems, into two categories : those depending uniquely on
the robot configuration, and those depending in particular on the velocity, which in
turn is related to the energy of the system. Consider for instance a humanoid robot in a
multi-contact task. Such a robot must (1) avoid collision with the environment, (2) avoid
self-collisions, (3) respect kinematic closure for the parts in contact with the environment
(e.g. the stance foot must be fixed with respect to the ground), (4) maintain balance. It
can be noted that constraints (1 – 3) are exclusively related to the configuration of the
robot, while constraint (4), once a path is given, depends mostly on the path velocity.

From a practical viewpoint, the two sub-problems – geometric path planning and
kinodynamic time-parameterization – have received so much attention from the robotics
community in the past three decades that a large body of theory and good practices
exist and can be readily combined to yield efficient trajectory planners. Briefly, high-
dimensional and cluttered geometric path planning problems can now be solved in sec-
onds thanks to sampling-based planning algorithms such as PRM [Kavraki et al., 1996]
or RRT [Kuffner and LaValle, 2000] and to the dozens of heuristics that have been
developed for these algorithms. Regarding kinodynamic time-parameterization, two im-
portant discoveries about the structure of the problem have led to particularly efficient
algorithmic solutions. First, the bang-bang nature of the optimal velocity profile was
identified by [Bobrow et al., 1985, Shin and McKay, 1986], leading to fast numerical
integration methods [see Pham, 2014, for extensive historical references]. Second, this
problem was shown to be reducible to a convex optimization problem, leading to ro-
bust and versatile convex-optimization-based solutions [see e.g. Verscheure et al., 2009,
Hauser, 2014].

Problems with state-space planning and trajectory optimization approaches
Alternative approaches to path-velocity decomposition include planning directly in the
state space and trajectory optimization. The first approach deploys traditional path
planners such as RRT [LaValle and Kuffner, 2001] or PRM [Hsu et al., 2002] directly

2

into the state space, that is, the configuration space augmented with velocity coordi-
nates. Three main difficulties are associated with this approach. First, the dimension
of the state space is twice that of the configuration space, resulting in higher algorith-
mic complexity. Second, while connecting two adjacent configurations under geometric
constraints is trivial (using e.g. linear segments), connecting two adjacent states under
kinodynamic constraints is considerably more challenging and time-consuming, requiring
e.g. to solve a two-point boundary value problem [LaValle and Kuffner, 2001] or to sam-
ple in the control space and to integrate forward the sampled control [Hsu et al., 2002,
Sucan and Kavraki, 2012, Papadopoulos et al., 2014, Li et al., 2015]. Third, especially
for state-space RRTs, designing a reasonablemetric is particularly difficult : Shkolnik et al.
[2009] showed that, even for the 1-DOF pendulum subject to torque constraints, a state-
space RRT with a simple Euclidean metric is doomed to failure. The authors then pro-
posed to construct an efficient metric by solving local optimal control problems. In a
similar fashion, kinodynamic planners based on locally linearized system dynamics were
proposed, such as LQR-Tree [Tedrake, 2009] or LQR-RRT∗ [Perez et al., 2012]. While
such methods can be applied to low-DOF systems, the necessity to solve an optimal
control problem of the dimension of the system at each tree extension makes it unlikely
to scale to higher dimensions. For these reasons, in spite of appealing completeness guar-
antees [under some precise conditions, see e.g. Caron et al., 2014, Papadopoulos et al.,
2014, Kunz and Stilman, 2015], there exist, to our knowledge, few examples of successful
application of state-space planning to high-DOF systems with complex nonlinear dynam-
ics and constraints in challenging environments [see e.g. Sucan and Kavraki, 2012].

The second approach, trajectory optimization, starts with an initial trajectory, which
may not be valid (for example the trajectory may not reach the goal configuration, the
robot may collide with the environment or may lose balance at some time instants, etc.)
One then iteratively modifies the trajectory so as to decrease a cost – which encodes in
particular how much the constraints are violated – until it falls below a certain threshold,
implying in turn that the trajectory reaches the goal and all constraints are satisfied.
Many interesting variations exist : the iterative modification step may be determinis-
tic [Ratliff et al., 2009] or stochastic [Kalakrishnan et al., 2011], the optimization may
be done through contact [Mordatch et al., 2012, Posa and Tedrake, 2013], etc. However,
for long time-horizon and high-DOF systems, this approach requires solving a large non-
linear optimization problem, which is computationally challenging because of the huge
problem size and the existence of many local minima [see Hauser, 2014, for an extensive
discussion of the advantages and limitations of trajectory optimization and comparison
with path-velocity decomposition].

The quasi-static condition and its limitations Coming back to path-velocity de-
composition, a fundamental requirement here is that the path found in the first step
must be time-parameterizable. A commonly-used method to fulfill this requirement is to
consider, in that step, the quasi-static constraints that are derived from the original kin-
odynamic constraints by assuming that the motion is executed at zero velocity. Indeed,
the so-derived quasi-static constraints can be expressed using only configuration-space
variables, in such a way that planning with quasi-static constraints is purely a geomet-
ric path planning problem. In the context of legged robots for example, the balance
of the robot at zero velocity is guaranteed when the projection of the center of gravity

3

lies in the support area – a purely geometric condition. This quasi-static condition is
assumed in most works dedicated to the planning of complex humanoid motions [see
e.g. Kuffner et al., 2002].

This workaround suffers however from a major limitation : the quasi-static condition
may be too restrictive and one thus may overlook many possible solutions, i.e. incurring
an important loss in completeness. For instance, legged robots walking with ZMP-based
control [Vukobratovic et al., 2001] are dynamically balanced but almost never satisfy
the aforementioned quasi-static condition on the center of gravity. Another example
is provided by an actuated pendulum subject to severe torque limits, but which can
still be put into the upright position by swinging back and forth several times. It is
clear that such solutions make an essential use of the system dynamics and can in no
way be discovered by quasi-static methods, nor by any method that considers only
configuration-space coordinates.

Planning truly dynamic motions Here we propose a method to overcome this lim-
itation. At the heart of the proposed method is a new algorithm – Admissible Velocity
Propagation (AVP) – which is based in turn on the classical Time-Optimal Path Param-
eterization (TOPP) algorithm first introduced by Bobrow et al. [1985], Shin and McKay
[1986] and later perfected by many others [see Pham, 2014, and references therein]. In
contrast with TOPP, which determines one optimal velocity profile along a given path,
AVP addresses all valid velocity profiles along that path, requiring only slightly more
computation time than TOPP itself. Combining AVP with usual sampling-based path
planners, such as RRT, gives rise to a family of new trajectory planners that can appro-
priately handle kinodynamic constraints while retaining the advantages associated with
path-velocity decomposition.

The remainder of this article is organized as follows. In Section 2, we briefly re-
call the fundamentals of TOPP before presenting AVP. In Section 3, we show how to
combine AVP with usual sampling-based path planners such as RRT. In Section 4, we
demonstrate the efficiency of the new AVP-based planners on some challenging kino-
dynamic planning problems – in particular, those where the quasi-static approach is
guaranteed to fail. In one of the applications, the planned motion is executed on an
actual 6-DOF robot. Finally, in Section 5, we discuss the advantages and limitations of
the proposed approach (one particular limitation is that the approach does not a priori
apply to under-actuated systems) and sketch some future research directions.

2 Propagating admissible velocities along a path

2.1 Background : Time-Optimal Path Parameterization (TOPP)

As mentioned in the Introduction, there are two main approaches to TOPP : “numerical
integration” and “convex optimization”. We briefly recall the numerical integration
approach [Bobrow et al., 1985, Shin and McKay, 1986], on which AVP is based. For
more details about this approach, the reader is referred to Pham [2014].

Let q be an n-dimensional vector representing the configuration of a robot system.
Consider second-order inequality constraints of the form [Pham, 2014]

A(q)q̈+ q̇⊤B(q)q̇ + f(q) ≤ 0, (1)

4

where A(q), B(q) and f(q) are respectively an M ×n matrix, an n×M ×n tensor and
an M -dimensional vector. Inequality (1) is general and may represent a large variety
of second-order systems and constraints, such as fully-actuated manipulators 2 subject
to velocity, acceleration or torque limits [see e.g. Bobrow et al., 1985, Shin and McKay,
1986], wheeled vehicles subject to sliding and tip-over constraints [Shiller and Gwo,
1991], etc. Redundantly-actuated systems, such as closed-chain manipulators subject
to torque limits or legged robots in multi-contact subject to stability constraints, can
also be represented by inequality (1) [Pham and Stasse, 2015]. However, under-actuated
systems cannot be in general taken into account by the framework, see Section 5 for a
more detailed discussion.

Note that “direct” velocity bounds of the form

q̇⊤Bv(q)q̇+ fv(q) ≤ 0, (2)

can also be taken into account [Zlajpah, 1996]. For clarity, we shall not include such “di-
rect” velocity bounds in the following development. Rather, we shall discuss separately
how to deal with such bounds in Section 2.3.

Consider now a path P in the configuration space, represented as the underlying
path of a trajectory q(s)s∈[0,send]. Assume that q(s)s∈[0,send] is C1- and piecewise C2-
continuous.

Definition 1 A time-parameterization of P – or time-reparameterization of q(s)s∈[0,send]
– is an increasing scalar function s : [0, T ′] → [0, send]. A time-parameterization can
be seen alternatively as a velocity profile, which is the curve ṡ(s)s∈[0,send] in the s–
ṡ plane. We say that a time-parameterization or, equivalently, a velocity profile, is
valid if s(t)t∈[0,T ′] is continuous, ṡ is always strictly positive, and the retimed trajectory
q(s(t))t∈[0,T ′] satisfies the constraints of the system.

To check whether the retimed trajectory satisfies the system constraints, one may
differentiate q(s(t)) with respect to t :

q̇ = qsṡ, q̈ = qss̈+ qssṡ
2, (3)

where dots denote differentiations with respect to the time parameter t and qs = dq
ds

and qss =
d2q
ds2 . Substituting (3) into (1) then leads to

s̈A(q)qs + ṡ2A(q)qss + ṡ2q⊤
s B(q)qs + f(q) ≤ 0,

which can be rewritten as

s̈a(s) + ṡ2b(s) + c(s) ≤ 0, where (4)

a(s)
def
= A(q(s))qs(s),

b(s)
def
= A(q(s))qss(s) + qs(s)

⊤B(q(s))qs(s), (5)

c(s)
def
= f(q(s)).

2When dry Coulomb friction or viscous damping are not negligible, one may consider adding an extra
term C(q)q̇. Such a term would simply change the computation of the fields α and β (see infra), but
all the rest of the development would remain the same [Slotine and Yang, 1989].

5

Each row i of equation (4) is of the form

ai(s)s̈+ bi(s)ṡ
2 + ci(s) ≤ 0.

Next,

• if ai(s) > 0, then one has s̈ ≤ −ci(s)−bi(s)ṡ
2

ai(s)
. Define the acceleration upper bound

βi(s, ṡ)
def
= −ci(s)−bi(s)ṡ2

ai(s)
;

• if ai(s) < 0, then one has s̈ ≥ −ci(s)−bi(s)ṡ
2

ai(s)
. Define the acceleration lower bound

αi(s, ṡ)
def
= −ci(s)−bi(s)ṡ

2

ai(s)
.

One can then define for each (s, ṡ)

α(s, ṡ)
def
= max

i
αi(s, ṡ), β(s, ṡ)

def
= min

i
βi(s, ṡ).

From the above transformations, one can conclude that q(s(t))t∈[0,T ′] satisfies the
constraints (1) if and only if

∀t ∈ [0, T ′] α(s(t), ṡ(t)) ≤ s̈(t) ≤ β(s(t), ṡ(t)). (6)

Note that (s, ṡ) 7→ (ṡ, α(s, ṡ)) and (s, ṡ) 7→ (ṡ, β(s, ṡ)) can be viewed as two vector
fields in the s–ṡ plane. One can integrate velocity profiles following the field (ṡ, α(s, ṡ))
(from now on, α in short) to obtain minimum acceleration profiles (or α-profiles), or
following the field β to obtain maximum acceleration profiles (or β-profiles).

Next, observe that if α(s, ṡ) > β(s, ṡ) then, from (6), there is no possible value for
s̈. Thus, to be valid, every velocity profile must stay below the maximum velocity curve
(MVC in short) defined by 3

MVC(s)
def
=

{
min{ṡ ≥ 0 : α(s, ṡ) = β(s, ṡ)} if α(s, 0) ≤ β(s, 0),

0 if α(s, 0) > β(s, 0).
(7)

It was shown [see e.g. Shiller and Lu, 1992] that the time-minimal velocity profile is
obtained by a bang-bang-type control, i.e., whereby the optimal profile follows alterna-
tively the β and α fields while always staying below the MVC. A method to find the
optimal profile then consists in (see Fig. 1A for illustration) :

• find all the possible α → β switch points. There are three types of such switch
points : “discontinuous”, “singular” or “tangent” and they must all be on the
MVC. The procedure to find these switch points is detailed in Pham [2014];

• from each of these switch points, integrate backward following α and forward
following β to obtain the Limiting Curves (LC) [Slotine and Yang, 1989];

• construct the Concatenated Limiting Curve (CLC) by considering, for each s, the
value of the lowest LC at s;

3Setting MVC(s) = 0 whenever α(s, 0) > β(s, 0) as in (7) precludes multiple-valued MVCs [cf.
Shiller and Dubowsky, 1985]. We made this choice throughout the paper for clarity of exposition.
However, in the implementation, we did consider multiple-valued MVCs.

6

• integrate forward from (0, ṡbeg) following β and backward from (send, ṡend) follow-
ing α, and consider the intersection of these profiles with each other or with the
CLC. Note that the path velocities ṡbeg and ṡend are computed from the desired
initial and final velocities vbeg and vend by

ṡbeg
def
= vbeg/‖qs(0)‖, ṡend

def
= vend/‖qs(send)‖. (8)

0 send

s
.

Max Vel Curve
(MVC)

Limiting Curves (LC)
Concat. Limit. Curve (CLC)

switch point
α→β

send

sbeg

.
.

α
α

α
β

β
β

switch point
β→α

β
α

s
.

A B

s1 s2

<0

>0

Figure 1: A : Illustration for Maximum Velocity Curve (MVC) and Concatenated Limit-
ing Curve (CLC). The optimal velocity profile follows the green β-profile, then a portion
of the CLC, and finally the yellow α-profile. B : Illustration for the Switch Point Lemma.

We now prove two lemmata that will be important later on.

Lemma 1 (Switch Point Lemma) Assume that a forward β-profile hits the MVC at
s = s1 and a backward α-profile hits the MVC at s = s2, with s1 < s2, then there exists
at least one α→ β switch point on the MVC at some position s3 ∈ [s1, s2].

Proof At (s1,MVC(s1)), the angle from the vector β to the tangent to the MVC is
negative (see Fig. 1B). In addition, since we are on the MVC, we have α = β, thus the
angle from α to the tangent is negative too. Next, at (s2,MVC(s2)), the angle of α
to the tangent to the MVC is positive (see Fig. 1B). Thus, since the vector field α is
continuous, there exists, between s1 and s2

(i) either a point where the angle between α and the tangent to the MVC is 0 – in
which case we have a tangent switch point;

(ii) or a point where the MVC is discontinuous – in which case we have a discontinuous
switch point;

(iii) or a point where the MVC is continuous but non differentiable – in which case we
have a singular switch point.

For more details, the reader is referred to Pham [2014]. ✷

Lemma 2 (Continuity of the CLC) Either one of the LC’s reaches ṡ = 0, or the
CLC is continuous.

Proof Assume by contradiction that no LC reaches ṡ = 0 and that there exists a “hole”
in the CLC. The left border s1 of the hole must then be defined by the intersection of
the MVC with a forward β-LC (coming from the previous α → β switch point), and

7

the right border s2 of the hole must be defined by the intersection of the MVC with a
backward α-LC (coming from the following α → β switch point). By Lemma 1 above,
there must then exist a switch point between s1 and s2, which contradicts the definition
of the hole. ✷

2.2 Admissible Velocity Propagation (AVP)

This section presents the Admissible Velocity Propagation algorithm (AVP), which con-
stitutes the heart of our approach. This algorithm takes as inputs :

• a path P in the configuration space, and

• an interval [ṡmin
beg , ṡ

max
beg] of initial path velocities;

and returns the interval (cf. Theorem 1) [ṡmin
end , ṡ

max
end] of all path velocities that the system

can reach at the end of P after traversing P while respecting the system constraints 4.
The algorithm comprises the following three steps :

A Compute the limiting curves;

B Determine the maximum final velocity ṡmax
end by integrating forward from s = 0;

C Determine the minimum final velocity ṡmin
end by bisection search and by integrating

backward from s = send.

We now detail each of these steps.

A Computing the limiting curves We first compute the Concatenated Limiting
Curve (CLC) as shown in Section 2.1. From Lemma 2, either one of the LC’s reaches 0
or the CLC is continuous. The former case is covered by A1 below, while the latter is
covered by A2–5.

A1 One of the LC’s hits the line ṡ = 0. In this case, the path cannot be traversed by
the system without violating the kinodynamic constraints : AVP returns Failure.
Indeed, assume that a backward (α) profile hits ṡ = 0. Then any profile that goes
from s = 0 to s = send must cross that profile somewhere and from above, which
violates the α bound (see Figure 2A). Similarly, if a forward (β) profile hits ṡ = 0,
then that profile must be crossed somewhere and from below, which violates the β
bound. Thus, no valid profile can go from s = 0 to s = send;

The CLC is now assumed to be continuous and strictly positive. Since it is bounded
by s = 0 from the left, s = send from the right, ṡ = 0 from the bottom and the MVC
from the top, there are only four exclusive and exhaustive cases, listed below.

A2 The CLC hits the MVC while integrating backward and while integrating forward.

In this case, let ṡ∗beg
def
= MVC(0) and go to B. The situation where there is no

switch point is assimilated to this case;

4Johnson and Hauser [2012] also introduced a velocity interval propagation algorithm along a path
but for pure kinematic constraints and moving obstacles.

8

A B

Figure 2: Illustration for step A (computation of the LC’s). A : illustration for case A1.
A profile that crosses an α-CLC violates the α bound. B : illustration for case A3.

A3 The CLC hits s = 0 while integrating backward, and the MVC while integrating

forward (see Figure 2B). In this case, let ṡ∗beg
def
= CLC(0) and go to B;

A4 The CLC hits the MVC while integrating backward, and s = send while integrating

forward. In this case, let ṡ∗beg
def
= MVC(0) and go to B;

A5 The CLC hits s = 0 while integrating backward, and s = send while integrating

forward. In this case, let ṡ∗beg
def
= CLC(0) and go to B.

B Determining the maximum final velocity Note that, in any of the cases A2–5,
ṡ∗beg was defined so that no valid profile can start above it. Thus, if ṡmin

beg > ṡ∗beg, the
path is not traversable : AVP returns Failure. Otherwise, the interval of valid initial

velocities is [ṡmin
beg , ṡ

max∗
beg] where ṡmax∗

beg
def
= min(ṡmax

beg , ṡ
∗
beg).

Definition 2 Under the nomenclature introduced in Definition 1, we say that a velocity
ṡend is a valid final velocity if there exists a valid profile that starts at (0, ṡ0) for some
ṡ0 ∈ [ṡmin

beg , ṡ
max
beg] and ends at (send, ṡend).

We argue that the maximum valid final velocity can be obtained by integrating
forward from ṡmax∗

beg following β. Let’s call Φ the velocity profile obtained by doing so.
Since Φ is continuous and bounded by s = send from the right, ṡ = 0 from the bottom,
and either the MVC or the CLC from the top, there are four exclusive and exhaustive
cases, listed below (see Figure 3 for illustration).

B1 Φ hits ṡ = 0 (cf. profile B1 in Fig. 3). Here, as in the case A1, the path is not
traversable : AVP returns Failure. Indeed, any profile that starts below ṡmax∗

beg

and tries to reach s = send must cross Φ somewhere and from below, thus violating
the β bound;

B2 Φ hits s = send (cf. profile B1 in Fig. 3). Then Φ(send) corresponds to the ṡmax
end we

are looking for. Indeed, Φ(send) is reachable – precisely by Φ –, and to reach any
value above Φ(send), the corresponding profile would have to cross Φ somewhere
and from below;

B3 Φ hits the CLC. There are two sub-cases:

9

Figure 3: Illustration for step B : one can determine the maximum final velocity by
integrating forward from (0, ṡ∗beg).

B3a If we proceed from cases A4 or A5 (in which the CLC reaches s = send, cf.
profile B3 in Fig. 3), then CLC(send) corresponds to the ṡmax

end we are looking
for. Indeed, CLC(send) is reachable – precisely by the concatenation of Φ and
the CLC –, and no value above CLC(send) can be valid by the definition of
the CLC;

B3b If we proceed from cases A2 or A3, then the CLC hits the MVC while inte-
grating forward, say at s = s1; we then proceed as in case B4 below;

B4 Φ hits the MVC, say at s = s1. It is clear that MVC(send) is an upper bound of
the valid final velocities, but we have to ascertain whether this value is reachable.
For this, we use the predicate IS VALID defined in Box 1 of C :

• if IS VALID(MVC(send)), then MVC(send) is the ṡmax
end we are looking for;

• else, the path is not traversable : AVP returns Failure. Indeed, as we shall
see, if for a certain ṡtest, the predicate IS VALID(ṡtest) is False, then no
velocity below ṡtest can be valid either.

C Determining the minimum final velocity Assume that we proceed from the
cases B2–4. Consider a final velocity ṡtest where

• ṡtest < Φ(send) if we proceed from B2;

• ṡtest < CLC(send) if we proceed from B3a;

• ṡtest < MVC(send) if we proceed from B3b or B4.

Let us integrate backward from (send, ṡtest) following α and call the resulting profile
Ψ. We have the following lemma.

Lemma 3 Ψ cannot hit the MVC before hitting either Φ or the CLC.

Proof If we proceed from B2 or B3a, then it is clear that Ψ must first hit Φ (case B2)
or the CLC (case B3a) before hitting the MVC. If we proceed from B3b or B4, assume
by contradiction that Ψ hits the MVC first at a position s = s2. Then by Lemma 1,
there must exist a switch point between s2 and the end of the CLC (in case B3b) or

10

the end of Φ (in case B4). In both cases, there is a contradiction with the fact that the
CLC is continuous. ✷

We can now detail in Box 1 the predicate IS VALID which assesses whether a final
velocity ṡtest is valid.

Box 1: IS VALID
Input: candidate final velocity ṡtest
Output: True iff there exists a valid velocity profile with final velocity ṡtest
Consider the profile Ψ constructed above. Since it must hit Φ or the CLC before
hitting the MVC, the following five cases are exclusive and exhaustive (see Fig. 4
for illustrations) :

C1 Ψ hits ṡ = 0 (Fig. 4, profile C1). Then, as in cases A1 or B1, no velocity profile
can reach stest : return False;

C2 Ψ hits s = 0 for some ṡ0 < ṡmin
beg (see Figure 4, profile C2). Then any profile that

ends at ṡtest would have to hit Ψ from above, which is impossible : return False;

C3 Ψ hits s = 0 at a point ṡ0 ∈ [ṡmin
beg , ṡ

max∗
beg] (Fig. 4, profile C3). Then ṡtest can be

reached following the valid velocity profile Ψ : return True. (Note that, if
ṡ0 > ṡmax∗

beg then Ψ must have crossed Φ somewhere before arriving at s = 0,
which is covered by case C4 below);

C4 Ψ hits Φ (Fig. 4, profile C4). Then ṡtest can be reached, precisely by the
concatenation of a part of Φ and Ψ : return True;

C5 Ψ hits the CLC (Fig. 4, profile C5). Then ṡtest can be reached, precisely by the
concatenation of Φ, a part of the CLC and Ψ : return True.

Figure 4: Illustration for the predicate IS VALID : one can assess whether a final velocity
ṡtest is valid by integrating backward from (send, ṡtest).

At this point, we have that, either the path is not traversable, or we have determined
ṡmax
end in B. Remark from C3–5 that, if some ṡ0 is a valid final velocity, then any ṡ ∈
[ṡ0, ṡ

max
end] is also valid. Similarly, from C1 and C2, if some ṡ0 is not a valid final velocity,

then no ṡ ≤ s0 can be valid. We have thus established the following result :

11

Theorem 1 The set of valid final velocities is an interval.

This interval property enables one to efficiently search for the minimum final velocity
as follows. First, test whether 0 is a valid final velocity: if IS VALID(0), then the
sought-after ṡmin

end is 0. Else, run a standard bisection search with initial bounds (0, ṡmax
end]

where 0 is not valid and ṡmax
end is valid. Thus, after executing log2(1/ǫ) times the routine

IS VALID, one can determine ṡmin
end with a precision ǫ.

2.3 Remarks

Implementation and complexity of AVP As clear from the previous section, AVP
can be readily adapted from the numerical integration approach to TOPP. As a matter
of fact, we implemented AVP in about 100 lines of C++ code based on the TOPP library
we developed previously (see https://github.com/quangounet/TOPP).

In terms of complexity, the main difference between AVP and TOPP lies in the
bisection search of step C, which requires log(1/ǫ) backward integrations. However, in
practice, these integrations terminate quickly, either by hitting the MVC or the line
ṡ = 0. Thus, the actual running time of AVP is only slightly larger than that of TOPP.
As illustration, in the bottle experiment of Section 4.2, we considered 100 random paths,
discretized with grid size N = 1000. TOPP and AVP (with the bisection precision
ǫ = 0.01) under velocity, acceleration and balance constraints took the same amount of
computation time 0.033 ± 0.003 s per path.

“Direct” velocity bounds “Direct” velocity bounds in the form of (2) give rise to
another maximum velocity curve, say MVCD, in the (s, ṡ) space. When a forward profile
intersects MVCD (before reaching the “Bobrow’s MVC”), several cases can happen :

1. If “sliding” along the MVCD does not violate the actuation bounds (1), then slide
as far as possible along the MVC. The “slide” terminates either (a) when the
maximum acceleration vector β points downward from the MVCD: in this case
follow that vector out of MVCD or (b) when the minimum acceleration vector α
points upward from the MVCD: in this case, proceed as in 2;

2. If not, then search forward on the MVCD until finding a point from which one can
integrate backward. Such a point is guaranteed to exist and the backward profile
will intersect the forward profile.

For more details, the reader is referred to [Zlajpah, 1996].
This reasoning can be extended to AVP: when integrating the forward or the back-

ward profiles (in steps A, B, C of the algorithm), each time a profile intersects the
MVCD, one simply applies the above steps.

AVP-backward Consider the “AVP-backward” problem : given an interval of final
velocities [ṡmin

end , ṡ
max
end], compute the interval [ṡmin

beg , ṡ
max
beg] of all possible initial velocities.

As we shall see in Section 3.2, AVP-backward is essential for the bi-directional version
of AVP-RRT [see also Nakamura and Mukherjee, 1991].

It turns out that AVP-backward can be easily obtained by modifying AVP as fol-
lows [Lertkultanon and Pham, 2014] :

12

https://github.com/quangounet/TOPP

• step A of AVP-backward is the same as in AVP;

• in step B of AVP-backward, one integrates backward from ṡmin∗
end instead of inte-

grating forward from ṡmax∗
beg ;

• in the bisection search of step C of AVP-backward, one integrates forward from
(0, ṡtest) instead of integrating backward from(send, ṡtest).

Convex optimization approach As mentioned in the Introduction, “convex opti-
mization” is another possible approach to TOPP [Verscheure et al., 2009, Hauser, 2014].
It is however unclear to us whether one can modify that approach to yield a “convex-
optimization-based AVP” other than sampling a large number of (ṡstart, ṡend) pairs
and running the “convex-optimization-based TOPP” between (0, ṡstart) and (send, ṡend),
which would arguably be very slow.

3 Kinodynamic trajectory planning using AVP

3.1 Combining AVP with sampling-based planners

The AVP algorithm presented in Section 2.2 is general and can be combined with various
iterative path planners. As an example, we detail in Box 2 and illustrate in Figure 5 a
planner we call AVP-RRT, which results from the combination of AVP with the standard
RRT path planner [Kuffner and LaValle, 2000].

As in the standard RRT, AVP-RRT iteratively constructs a tree T in the configura-
tion space. However, in contrast with the standard RRT, a vertex V here consists of a
triplet (V .config, V .inpath, V .interval) where V .config is an element of the configuration
space C , V .inpath is a path P ⊂ C that connects the configuration of V ’s parent to
V .config, and V .interval is the interval of reachable velocities at V .config, that is, at the
end of V .inpath.

At each iteration, a random configuration qrand is generated. The EXTEND routine
(see Box 3) then tries to extend the tree T towards qrand from the closest – in a certain
metric d – vertex in T . The algorithm terminates when either

• A newly-found vertex can be connected to the goal configuration (line 10 of Box 2).
In this case, AVP guarantees by recursion that there exists a path from qstart to
qgoal and that this path is time-parameterizable;

• After Nmaxrep repetitions, no vertex could be connected to qgoal. In this case, the
algorithm returns Failure.

The other routines are defined as follows :

• CONNECT(V,qgoal) attempts at connecting directly V to the goal configuration
qgoal, using the same algorithm as in lines 2 to 10 of Box 3, but with the further
requirement that the goal velocity is included in the final velocity interval;

• COMPUTE TRAJECTORY(T ,qgoal) reconstructs the entire path Ptotal from qstart

to qgoal by recursively concatenating the V .inpath. Next, Ptotal is time-parameterized
by applying TOPP. The existence of a valid time-parameterization is guaranteed
by recursion by AVP.

13

Box 2: AVP-RRT
Input : qstart, qgoal

Output : A valid trajectory connecting qstart to qgoal or Failure

1: T ← NEW TREE()
2: Vstart ← NEW VERTEX()
3: Vstart.config ← qstart; Vstart.inpath← Null; Vstart.interval← [0, 0]
4: INITIALIZE(T , Vstart)
5: for rep = 1 to Nmaxrep do
6: qrand ← RANDOM CONFIG()
7: Vnew ← EXTEND(T ,qrand)
8: if EXTEND succeeds then
9: ADD VERTEX(T , Vnew)

10: if CONNECT(Vnew,qgoal) succeeds then
11: return COMPUTE TRAJECTORY(T ,qgoal)
12: end if
13: end if
14: end for
15: return Failure

Figure 5: Illustration for AVP-RRT. The horizontal plane represents the configuration
space while the vertical axis represents the path velocity space. Black areas represent
configuration space obstacles. A vertex in the tree is composed of a configuration (blue
disks), the incoming path from the parent (blue curve), and the interval of admissible
velocities (bold magenta segments). At each tree extension step, one interpolates a
smooth, collision-free path in the configuration space and propagates the interval of ad-
missible velocities along that path using AVP. The fine magenta line shows one possible
valid velocity profile (which is guaranteed to exist by AVP) “above” the path connecting
qstart and qnew.

14

Box 3: EXTEND
Input : T , qrand

Output : A new vertex Vnew or Null

1: Vnear ← NEAREST NEIGHBOR(T ,qrand)
2: (Pnew,qnew)← INTERPOLATE(Vnear,qrand)
3: if P is collision-free then
4: [ṡmin, ṡmax]← AVP(Pnew, Vnear.interval)
5: if AVP succeeds then
6: Vnew ← NEW VERTEX()
7: Vnew.config← qnew; Vnew.inpath← Pnew; Vnew.interval← [ṡmin, ṡmax]
8: return Vnew

9: end if
10: end if
11: return Failure

• NEAREST NEIGHBOR(T ,q) returns the vertex of T whose configuration is clos-
est to configuration q in the metric d, see Section 3.2 for a more detailed discussion.

• INTERPOLATE(V,q) returns a pair (Pnew,qnew) where qnew is defined as follows

– if d(V .config,q) ≤ R where R is a user-defined extension radius as in the
standard RRT algorithm [Kuffner and LaValle, 2000], then qnew ← q;

– otherwise, qnew is a configuration “in the direction of” q but situated within
a distance R of V .config (contrary to the standard RRT, it might not be wise
to choose a configuration laying exactly on the segment connecting V .config
and q since here one has also to take care of C1-continuity, see below).

The path Pnew is a smooth path connecting V .config and qnew, and such that the
concatenation of V .inpath and Pnew is C1 at V .config, see Section 3.2 for a more
detailed discussion.

3.2 Implementation and variations

As in the standard RRT [Kuffner and LaValle, 2000], some implementation choices in-
fluence substantially the performance of the algorithm.

Metric In state-space RRTs, the most critical choice is that of the metric d, in partic-
ular, the relative weighting between configuration-space coordinates and velocity
coordinates. In our approach, since the whole interval of valid path velocities is
considered, the relative weighting does not come into play. In practice, a simple
Euclidean metric on the configuration space is often sufficient. However, in some
applications, one may also include the final orientation of V .inpath in the metric.

Interpolation In geometric path planners, the interpolation between two configura-
tions is usually done using a straight segment. Here, since one needs to propagate
velocities, it is necessary to enforce C1-continuity at the junction point. In the

15

examples of Section 4, we used third-degree polynomials to do so. Other interpo-
lation methods are possible : higher-order polynomials, splines, etc. The choice of
the appropriate method depends on the application and plays an important role
in the performance of the algorithm.

K-nearest-neighbors Attempting connection from K nearest neighbors, where K > 1
is a judiciously chosen parameter, has been found to improve the performance of
RRT. To implement this, it suffices to replace line 2 of Box 3 with a FOR loop
that enumerates the K nearest neighbors. Note that this procedure is geared
towards reducing the search time, not at improving the trajectory quality as in
RRT∗ [Karaman and Frazzoli, 2011], see also below.

Post-processing After finding a solution trajectory, one can improve its quality (e.g.
trajectory duration, trajectory smoothness, etc.), by repeatedly applying the fol-
lowing shortcutting procedure [Geraerts and Overmars, 2007, Pham, 2012]:

1. select two random configurations on the trajectory;

2. interpolate a smooth shortcut path between these two configurations;

3. time-parameterize the shortcut using TOPP;

4. if the time-parameterized shortcut has shorter duration than the initial seg-
ment, then replace the latter by the former.

Instead of shortcutting, one may also give the trajectory found by AVP-RRT
as initial guess to a trajectory optimization algorithm, or implement a re-wiring
procedure as in RRT∗ [Karaman and Frazzoli, 2011], which has been shown to
be asymptotically optimal in the context of state-based planning (note however
that such re-wiring is not straightforward and might require additional algorithmic
developments).

Another significant benefit of AVP is that one can readily adapt heuristics that have
been developed for geometric path planners. We discuss two such heuristics below.

Bi-directional RRT Kuffner and LaValle [2000] remarked that growing simultane-
ously two trees, one rooted at the initial configuration and one rooted at the
goal configuration yielded significant improvement over the classical uni-directional
RRT. This idea [see also Nakamura and Mukherjee, 1991] can be easily imple-
mented in the context of AVP-RRT as follows [Lertkultanon and Pham, 2014] :

• The start tree is grown normally as in Section 3.1;

• The goal tree is grown similarly, but using AVP-backward (see Section 2.3)
for the velocity propagation step;

• Assume that one finds a configuration where the two trees are geometrically
connected. If the forward velocity interval of the start tree and the back-
ward velocity interval of the goal tree have a non-empty intersection at this
configuration, then the two trees can be connected dynamically.

16

Bridge test If two nearby configurations are in the obstacle space but their midpoint
q is in the free space, then most probably q is in a narrow passage. This idea
enables one to find a large number of such configurations q, which is essential
in problems involving narrow passages [Hsu et al., 2003]. This idea can be easily
implemented in AVP-RRT by simply modifying RANDOM CONFIG in line 6 of
Box 2 to include the bridge test.

One can observe from the above discussion that powerful heuristics developed for
geometric path planning can be readily used in AVP-RRT, precisely because the latter is
built on the idea of path-velocity decomposition. It is unclear how such heuristics can be
integrated in other approaches to kinodynamic motion planning such as the trajectory
optimization approach discussed in the Introduction.

4 Examples of applications

As AVP-RRT is based on the classical Time-Optimal Path Parameterization (TOPP)
algorithm, it can be applied to any type of systems and constraints TOPP can handle,
from double-integrators subject to velocity and acceleration bounds, to manipulator sub-
ject to torque limits [Bobrow et al., 1985, Shin and McKay, 1986], to wheeled vehicles
subject to balance constraints [Shiller and Gwo, 1991], to humanoid robots in multi-
contact tasks [Pham and Stasse, 2015], etc. Furthermore, the overhead for addressing
a new problem is minimal : it suffices to reduce the system constraints to the form of
inequality (1), and le tour est joué!

In this section, we present two examples where AVP-RRT was used to address plan-
ning problems in which no quasi-static solution exists. In the first example, the task
consisted in swinging a double pendulum into the upright configuration under severe
torque bounds. While this example does not fully exploit the advantages associated
with path-velocity decomposition (no configuration-space obstacle nor kinematic clo-
sure constraint was considered), we chose it since it was simple enough to enable a
careful comparison with the usual state-space planning approach [LaValle and Kuffner,
2001]. In the second example, the task consisted in transporting a bottle placed on
a tray through a small opening using a commercially-available manipulator (6 DOFs).
This example demonstrates the full power of path-velocity decomposition : geometric
constraints (going through the small opening) and dynamics constraints (the bottle
must remain on the tray) could be addressed separately. To the best of our knowledge,
this is the first successful demonstration on a non custom-built robot that kinodynamic
planning can succeed where quasi-static planning is guaranteed to fail.

4.1 Double pendulum with severe torque bounds

We first consider a fully-actuated double pendulum (see Figure 6B), subject to torque
limits

|τ1| ≤ τmax
1 , |τ2| ≤ τmax

2 .

Such a pendulum can be seen as a 2-link manipulator, so that the reduction to the form
of (1) is straightforward, see Pham [2014].

17

4.1.1 Obstruction to quasi-static planning

The task consisted in bringing the pendulum from its initial state (θ1, θ2, θ̇1, θ̇2) =
(0, 0, 0, 0) towards the upright state (θ1, θ2, θ̇1, θ̇2) = (π, 0, 0, 0), while respecting the
torque bounds. For simplicity, we did not consider self-collision issues.

Any trajectory that achieves the task must pass through a configuration where θ1 =
π/2. Note that the configuration with θ1 = π/2 that requires the smallest torque at the
first joint to stay still is (θ1, θ2) = (π/2, π). Let then τqs1 be this smallest torque. It is
clear that, if τmax

1 < τqs1 , then no quasi-static trajectory can achieve the task.
In our simulations, we used the following lengths and masses for the links: l = 0.2m

and m = 8kg, yielding τqs1 = 15.68N·m. For information, the smallest torque at the
second joint to keep the configuration (θ1, θ2) = (0, π/2) stationary was 7.84N·m. We
carried experiments in the following scenarii: (τmax

1 , τmax
2) ∈ {(11, 7), (13, 5), (11, 5)}

(N·m).

4.1.2 Solution using AVP-RRT

For simplicity we used the uni-directional version of AVP-RRT as described in Sec-
tion 3, without any heuristics. Furthermore, for fair comparison with state-space RRT
in Python (see Section 4.1.3), we used a Python implementation of AVP rather than
the C++ implementation contained in the TOPP library [Pham, 2014].

Regarding the number of nearest neighbors to consider, we chose K = 10. The
maximum number of repetitions was set to Nmaxrep = 2000. Random configurations
were sampled uniformly in [−π, π]2. A simple Euclidean metric in the configuration
space was used. Inverse Dynamics computations (required by the TOPP algorithm)
were performed using OpenRAVE [Diankov, 2010]. We ran 40 simulations for each
value of (τmax

1 , τmax
2) on a 2GHz Intel Core Duo computer with 2GB RAM. The results

are given in Table 1 and Figure 6. A video of some successful trajectories are shown at
http://youtu.be/oFyPhI3JN00.

Table 1: Results for the pendulum simulations
τmax Success Configs Vertices Search time
(N·m) rate tested added (min)

(11,7) 100% 64±44 31±23 4.2±2.7

(13,5) 100% 92±106 29±30 5.9±6.3

(11,5) 92.5% 212±327 56±81 12.1±15.0

4.1.3 Comparison with state-space RRT

We compared our implementation of AVP-RRT with the standard state-space RRT [LaValle and Kuffner,
2001] including the K-nearest-neighbors heuristic (KNN-RRT). More complex kinody-
namic planners have been applied to low-DOF systems like the double pendulum, in
particular those based on locally linearized dynamics [such as LQR-RRT∗ Perez et al.,
2012]. However, such planners require delicate tunings and have not been shown to scale
to systems with DOF ≥ 4. The goal of the present section is to compare the behavior
of AVP-RRT to its RRT counterpart on a low-DOF system. (In particular, we do not
claim that AVP-RRT is the best planner for a double pendulum.)

18

http://youtu.be/oFyPhI3JN00

A B

�3 �2 �1 0 1 2 3
Theta 1

�3

�2

�1

0

1

2

3

Th
et

a
2

C D

0 1 2 3 4 5 6 7
s

0

5

10

15

20

ṡ

0.0 0.5 1.0 1.5
Time (s)

�15

�10

�5

0

5

10

15
To

rq
ue

 (N
.m

)

Figure 6: Swinging up a fully-actuated double pendulum. A typical solution for the case
(τmax

1 , τmax
2) = (11, 5) N·m, with trajectory duration 1.88 s (see also the attached video).

A: The tree in the (θ1, θ2) space. The final path is highlighted in magenta. B: snapshots
of the trajectory, taken every 0.1 s. Snapshots taken near the beginning of the trajectory
are lighter. A video of the movement is available at http://youtu.be/oFyPhI3JN00.
C: Velocity profiles in the (s, ṡ) space. The MVC is in cyan. The various velocity profiles
(CLC, Φ, Ψ, cf. Section 2.2) are in black. The final, optimal, velocity profile is in dashed
blue. The vertical dashed red lines correspond to vertices where 0 is a valid velocity,
which allowed a discontinuity of the path tangent at that vertex. D: Torques profiles.
The torques for joint 1 and 2 are respectively in red and in blue. The torque limits are
in dotted line. Note that, in agreement with time-optimal control theory, at each time
instant, at least one torque limit was saturated (the small overshoots were caused by
discretization errors).

19

http://youtu.be/oFyPhI3JN00

We equipped the state-space RRT with generic heuristics that we tuned to the prob-
lem at hand, see Appendix A. In particular, we selected the best number of neighbors
K for K ∈ {1, 10, 40, 100}. Figure 7 and Table 2 summarize the results.

A B

2000 4000 6000 8000 10000
Computat ion t ime (s)

0

20

40

60

80

100

P
e
rc
e
n
ta
g
e
o
f
s
u
c
c
e
s
s
(%

)

AVP-RRT

RRT with 1 NN

RRT with 10 NN

RRT with 40 NN

RRT with 100 NN

2000 4000 6000 8000 10000
Computat ion t ime (s)

0.00

0.05

0.10

0.15

0.20

D
is
ta
n
c
e
to
ta
rg
e
t
(d
im
e
n
s
io
n
le
s
s
) AVP-RRT

RRT with 40 NN

C D

2000 4000 6000 8000 10000
Computat ion t ime (s)

0

20

40

60

80

100

P
e
rc
e
n
ta
g
e
o
f
s
u
c
c
e
s
s
(%

)

AVP-RRT

RRT with 1 NN

RRT with 10 NN

RRT with 40 NN

RRT with 100 NN

2000 4000 6000 8000 10000
Computat ion t ime (s)

0.00

0.05

0.10

0.15

0.20

D
is
ta
n
c
e
to
ta
rg
e
t
(d
im
e
n
s
io
n
le
s
s
) AVP-RRT

RRT with 40 NN

Figure 7: Comparison of AVP-RRT and KNN-RRT. A : Percentage of trials that have
reached the goal area at given time instants for τmax = (11, 7). B : Individual plots for
each trial. Each curve shows the distance to the goal as a function of time for a given
instance (red: AVP-RRT, blue: RRT-40). Dots indicate the time instants when a trial
successfully terminated. Stars show the mean values of termination times. C and D :
same legends as A and B but for τmax = (11, 5).

In the two problem instances, AVP-RRT was respectively 13.4 and 5.6 times faster
than the best KNN-RRT in terms of search time. We noted however that the search
time of AVP-RRT increased significantly from instance (τmax

1 , τmax
2) = (11, 5) to instance

(τmax
1 , τmax

2) = (11, 7), while that of RRT only marginally increased. This may be
caused by the “superposition” phenomenon : as torque constraints become tighter, more
“pumping” swings are necessary to reach the upright configuration. However, since our
metric was only on the configuration-space variables, configurations with different speeds
(corresponding to different pumping cycles) may become indistinguishable. While this
problem could be addressed by including a measure of reachable velocity intervals into
the metric, we chose not to do so in the present paper in order to avoid over-fitting
our implementation of AVP-RRT to the problem at hand. Nevertheless, AVP-RRT still
significantly over-performed the best KNN-RRT.

20

Table 2: Comparison of AVP-RRT and KNN-RRT
τmax = (11, 7) τmax = (11, 5)

Planner Success Search time Success Search time
rate (min) rate (min)

AVP-RRT 100% 3.3±2.6 100% 9.8±12.1

RRT-1 40% 70.0±34.1 47.5% 63.8±36.6

RRT-10 82.5% 53.1±59.5 85% 56.3±60.1

RRT-40 92.5% 44.6±42.6 87.5% 54.6±52.2

RRT-100 82.5% 88.4±54.0 92.5% 81.2±46.7

4.2 Non-prehensile object transportation

Here we consider the non-prehensile (i.e. without grasping) transportation of a bottle,
or “waiter motion”. Non-prehensile transportation can be faster and more efficient than
prehensile transportation since the time-consuming grasping and un-grasping stages are
entirely skipped. Moreover, in many applications, the objects to be carried are too soft,
fragile or small to be adequately grasped (e.g. food, electronic components, etc.)

4.2.1 Obstruction to quasi-static planning

A plastic milk bottle partially filled with sand was placed (without any fixation device)
on a tray. The mass of the bottle was 2.5 kg, its height was 24 cm (the sand was filled
up to 16 cm) and its base was a square of size 8 cm × 8 cm. The tray was mounted as
the end-effector of a 6-DOF serial manipulator (Denso VS-060). The task consisted in
bringing the bottle from an initial configuration towards a goal configuration, these two
configurations being separated by a small opening (see Fig. 8A).

For the bottle to remain stationary with respect to the tray, the following three
conditions must be satisfied :

• (Unilaterality) The normal component fn of the reaction force must be non-
negative;

• (Non-slippage) The tangential component ft of the reaction force must satisfy
‖ft‖ ≤ µfn, where µ is the static friction coefficient between the bottle and the
tray. In our experimental set-up, the friction coefficient was set to a high value
(µ = 1.7), such that the non-slippage condition was never violated before the ZMP
condition;

• (ZMP) The ZMP of the bottle must lie inside the bottle base [Vukobratovic et al.,
2001].

The height of the opening was designed so that, for the bottle to go through the opening,
it must be tilted by at least an angle θqs. However, when the bottle is tilted by that
angle, the center of mass (COM) of the bottle projects outside of the bottle base. As the
projection of the COM coincides with the ZMP in the quasi-static condition, tilting the
bottle by the angle θqs thus violates the ZMP condition and as a result, the bottle will
tip over. One can therefore conclude that no quasi-static motion can bring the bottle
through the opening without tipping it over.

21

4.2.2 Solution using AVP-RRT

We first reduced the three aforementioned conditions to the form of (1). Details of
this reduction can be found in Lertkultanon and Pham [2014]. We next used the bi-
directional version of AVP-RRT presented in Section 3.2. All vertices in the tree were
considered for possible connection from a new random configuration, but they were
sorted by increasing distance from the new configuration (a simple Euclidean metric in
the configuration space was used for the distance computation). As the opening was
very small (narrow passage), we made use of the bridge test [Hsu et al., 2003] in order to
automatically sample a sizable number of configurations inside or close to the opening.
Note that the use of the bridge test was natural thanks to path-velocity decomposition.

Because of the discrepancy between the planned motion and the motion actually
executed on the robot (in particular, actual acceleration switches cannot be infinitely
fast), we set the safety boundaries to be a square of size 5.5 cm × 5.5 cm (the actual
base size was 8 cm × 8 cm), which makes the planning problem even harder. Nev-
ertheless, our algorithm was able to find a feasible movement in about 3 hours on
a 3.2GHz Intel Core computer with 3.8GB RAM (see Fig. 8B–E), and this move-
ment could be successfully executed on the actual robot, see Fig. 9 and the video
at http://youtu.be/LdZSjNwpJs0. Note that the computation time of 3 hours was
for a particularly difficult problem instance : if the opening was only 5 cm higher, com-
putation time would be about 2 minutes, see Fig. 8F.

4.2.3 Comparison with OMPL-KPIECE

We were interested in comparing AVP-RRT with a state-of-the-art planner on this
bottle-and-tray problem. We chose KPIECE since it is one of the most generic and
powerful existing kinodynamic planners [Sucan and Kavraki, 2012]. Moreover, a robust
open-source implementation exists as a component of the widely-used Open Motion
Planning Library (OMPL) [Sucan et al., 2012].

The methods and results of the comparison are reported in detail in Appendix C.
Briefly, we first fine-tuned OMPL-KPIECE on the same 6-DOF manipulator model as
above. At this stage, we considered only bounds on velocity and accelerations, the bottle
and the tray were ignored for simplicity. Next, we compared AVP-RRT (Python/C++)
and OMPL-KPIECE (pure C++, with the best possible tunings obtained previously)
in an environment similar to that of Fig. 8. Here, we considered bounds on velocity and
accelerations and collisions with the environment. We ran each planner 20 times with a
time limit of 600 seconds. AVP-RRT had a success rate of 100% and an average running
time of 68.67 s, while OMPL-KPIECE failed to find any solution in any run. Based on
this decisive result, we decided not to try OMPL-KPIECE on the full bottle-and-tray
problem.

These comparison results thus further suggest that planning directly in the state-
space, while interesting from a theoretical viewpoint and successful in simulations and/or
on custom-built systems, is unlikely to scale to practical high-DOF problems.

22

http://youtu.be/LdZSjNwpJs0

A B C

− 0.6 − 0.4 − 0.2 0.0 0.2 0.4 0.6

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
s

0

1

2

3

4

5

6

7

8

9

ṡ

D E F

0.0 0.5 1.0 1.5 2.0 2.5
time (s)

−0.04

−0.02

0.00

0.02

0.04

ZM
P

ZMPx

ZMPy

0.0 0.5 1.0 1.5 2.0 2.5
time (s)

−0.04

−0.02

0.00

0.02

0.04

CO
M

COMx

COMy

0.340.350.360.370.380.390.40
opening height (m)

102

103

104

105

av
er
ag

e
ru
nn

in
g
tim

e
(s
)

Figure 8: Non-prehensile transportation of a bottle. A : Simulation environment. The
robot must bring the bottle to the other side of the opening while keeping it balanced
on the tray. B : Bi-RRT tree in the workspace : the start tree had 125 vertices and
the goal tree had 116 vertices. Red boxes represent the obstacles. Red stars represent
the initial and goal positions of the bottle COM. Green lines represent the paths of the
bottle COM in the tree. The successful path is highlighted in blue : it had 6 vertices.
C : MVC and velocity profiles in the (s, ṡ) space. Same legend as in Fig. 6C. D : ZMP
of the bottle in the tray reference frame (RF) for the successful trajectory. Note that
the ZMP always stayed within the imposed safety borders ±2.75 cm (the actual borders
were ±4 cm). E : COM of the bottle in the tray RF for the successful trajectory. Note
that the X-coordinate of the COM reached the maximum value of 4.03 cm, around
the moment when the bottle went through the opening, indicating that the successful
trajectory would not be quasi-statically feasible. F : Here we varied the opening height
(X-axis, from left to right : higher opening to lower opening) and determine the average
and standard deviation of computation time (Y-axis, logarithmic scale) required to find
a solution. We carried out 30 runs for opening heights from 0.4m to 0.365m, 10 runs
for 0.36m, 3 runs for 0.355m and 0.35m and 2 runs for 0.345m. The red dashed vertical
line indicates the critical height below which no quasi-static trajectory was possible.
Here, we used ±4 cm as boundaries for the ZMP, so that the computed motions, while
theoretically feasible, might not be actually feasible.

23

Figure 9: Snapshots of the motion of Fig. 8B–E taken every 0.5 s. Top two
rows : front view of the motion in the simulation environment. Bottom two
rows : side view of the motion executed on the actual robot (see also the video
at http://youtu.be/LdZSjNwpJs0).

24

http://youtu.be/LdZSjNwpJs0

5 Discussion

We have presented a new algorithm, Admissible Velocity Propagation (AVP) which,
given a path and an interval of reachable velocities at the beginning of that path, com-
putes exactly and efficiently the interval of valid final velocities. We have shown how
to combine AVP with well-known sampling-based geometric planners to give rise to a
family of new efficient kinodynamic planners, which we have evaluated on two difficult
kinodynamic problems.

Comparison to existing approaches to kinodynamic planning Compared to
traditional planners based on path-velocity decomposition, our planners remove the
limitation of quasi-static feasibility, precisely by propagating admissible velocity intervals
at each step of the tree extension. This enables our planner to find solutions when quasi-
static trajectories are guaranteed to fail, as illustrated by the two examples of Section 4.

Compared to other approaches to kinodynamic planning, our approach enjoys the
advantages associated with path-velocity decomposition, namely, the separation of the
complex planning problem into two simpler sub-problems : geometric and dynamic, for
both of which powerful methods and heuristics have been developed.

The bottle transportation example in Section 4.2 illustrates clearly this advantage.
To address the problem of the narrow passage constituted by the small opening, we
made use of the bridge test heuristics – initially developed for geometric path plan-
ners [Hsu et al., 2003] – which provides a large number of samples inside the narrow
passage. It is unclear how such a method could be integrated into the “trajectory opti-
mization” approach for example. Next, to steer between two configurations, we simply
interpolated a geometric path – and can check for collision at this stage – and then
found possible trajectories by running AVP. By contrast, in a “state-space planning”
approach, it would be difficult – if not impossible – to steer exactly between two states
of the system, which requires for instance solving a two-point boundary value prob-
lem. To avoid solving such difficult problems, LaValle and Kuffner [2001], Hsu et al.
[2002] propose to sample a large number of time-series of random control inputs and to
choose the time-series that steers the system the closest to the target state. However,
such shooting methods are usually considerably slower than “exact” methods – which
is the case of AVP –, as also illustrated in our simulation study (see Section 4.1 and
Appendices B, C).

Class of systems where AVP is applicable Since AVP is adapted from TOPP,
AVP can handle all systems and constraints that TOPP can handle, and only those
systems and constraints. Essentially, TOPP can be applied to a path q(s) in the con-
figuration space if the system can track that path at any velocities ṡ and accelerations
s̈, subject only to inequality constraints on ṡ and s̈. This excludes – a priori – all
under-actuated robots since, for these robots, most of the paths in the configuration
space cannot be traversed at all [Laumond, 1998], or at only one specific velocity.
Bullo and Lynch [2001] identified a subclass of under-actuated robots (including e.g.
planar 3-DOF manipulators with one passive joint or 3D underwater vehicles with three
off-center thrusters) for which one can compute a large subset of paths that can be

25

TOPP-ed (termed “kinematic motions”). Investigating whether AVP-RRT can be ap-
plied to such systems is the subject of ongoing research.

At the other end of the spectrum, redundantly-actuated robots can track most
of the paths in their configuration space (again, subject to actuation bounds). The
problem here is that, for a given admissible velocity profile along a path, there exists
in general an infinity of combinations of torques that can achieve that velocity pro-
file. Pham and Stasse [2015] showed how to optimally exploit actuation redundancy in
TOPP, which can be adapted straightforwardly to AVP-RRT.

Further remarks on completeness and complexity The AVP-RRT planner as
presented in Section 3 is likely not probabilistically complete. We address in more detail
in Appendix A the completeness properties of AVP-RRT, and more generally, of AVP-
based planners.

We now discuss another feature of AVP-based planners that makes them interesting
from a complexity viewpoint. Consider a trajectory or a trajectory segment that is
“explored” by a state-space planning or a trajectory optimization method – either in
one extension step for the former, or in an iterative optimization step for the latter. If
one considers the underlying path of this trajectory, one may argue that these methods
are exploring only one time-parameterization of that path, namely, that corresponding
to the trajectory at hand. By contrast, for a given path that is “explored” by AVP,
AVP precisely explores all time-parameterizations of that path, or in other words, the
whole “fiber bundle” of path velocities above the path at hand – at a computation cost
only slightly higher than that of checking one time-parameterization (see Section 2.3).
Granted that path velocity encodes important information about possible violations of
the dynamics constraints as argued in the Introduction, this full and free (as in free
beer) exploration enables significant performance gains.

Future works As just mentioned, we have recently extended TOPP to redundantly-
actuated systems, including humanoid robots in multi-contact tasks [Pham and Stasse,
2015]. This enables AVP-based planners to be applied to multi-contact planning for
humanoid robots. In this application, the existence of kinematic closure constraints
(the parts of the robot in contact with the environment should remain fixed) makes
path-velocity decomposition highly appealing since these constraints can be handled by
a kinematic planner independently from dynamic constraints (torque limits, balance,
etc.) In a preliminary experiment, we have planned a non-quasi-statically-feasible but
dynamically-feasible motion for a humanoid robot (see http://youtu.be/PkDSHodmvxY).
Going further, we are currently investigating how AVP-based planners can enable ex-
isting quasi-static multi-contact planning methods [Hauser et al., 2008, Escande et al.,
2013] to discover truly dynamic motions for humanoid robots with multiple contact
changes.

Acknowledgments

We are grateful to Prof. Zvi Shiller for inspiring discussions about the TOPP algorithm
and kinodynamic planning. This work was supported by a JSPS postdoctoral fellowship,
by a Start-Up Grant from NTU, Singapore, and by a Tier 1 grant from MOE, Singapore.

26

http://youtu.be/PkDSHodmvxY

A Probabilistic completeness of AVP-based planners

Essentially, the probabilistic completeness of AVP-based planners relies on two proper-
ties: the completeness of the path sampling process (Property 1), and the completeness
of velocity propagation (Property 2)

Property 1 any smooth path P in the configuration space will be approximated arbi-
trarily closely by the sampling process for a sufficiently large number of samples;

Property 2 if a smooth path P̂ = q̂(s)s∈[0,1] obtained by the sampling process can
be time-parameterized into a solution trajectory according to a certain velocity
profile v̂, then v̂ is contained within the velocity band propagated by AVP.

We first discuss the conditions under which these two Properties are verified and
then establish the completeness of AVP-based planners.

Definition 3 Let d designate a L∞-type distance between two trajectories or between
two paths :

d(Π, Π̂)
def
= sup

t∈[0,T]
‖Π(t)− Π̂(t)‖, (9)

d(P, P̂)
def
= sup

s∈[0,1]
‖q(s)− q̂(s)‖+ sup

s∈[0,1]
‖u(s)− û(s)‖, (10)

where u(s) is the unit tangent vector to P at s.

Proposition 1 Property 1 is true under the following hypotheses on the sampling pro-
cess

H1 each time a random configuration qrand is sampled, consider the set S of existing
vertices within a distance δ > 0 of qrand in the configuration space. Select K ran-
dom vertices within S, where K is proportional to the number of vertices currently
existing in the tree, and attempt to connect these vertices to qrand through the usual
interpolation and AVP procedures. For each successful connection, create a new
vertex Vnew, which has the same configuration qrand but a different “inpath” and
a different “interval”, depending on the parent vertex in S 5;

H2 consider the path interpolation from (u1,q1) to q2. The unit vector u2 at the end
of the interpolated path Pint is set to be the unit vector pointing from q1 to q2,
denoted uq1→q2

6;

H3 for every ∆ > 0, there exists η > 0 such that, if ‖u1 − uq1→q2
)‖ < η, then

d(Pint,Pstr(q1,q2)) < ∆/3, where Pstr(q1,q2) is the straight segment joining q1

to q2
7.

5Note that enforcing this hypothesis on the AVP-RRT planner presented in Section 3.1 will turn it
into an “AVP-PRM”.

6Note that, if q1 = qstart, then there is no associated unit tangent vector at q1. In such case, sample
a random unit tangent vector ustart for each interpolation call.

7This hypothesis basically says that, if the initial tangent vector (u1) is “aligned” with the displace-
ment vector (uq1→q2

), then the interpolation path is close to a straight line, which is verified for any
“reasonable” interpolation method.

27

Proof Consider a smooth path P = q(s)s∈[0,1] in the configuration space such that
q(0) = qstart. Since P is smooth, for s1 and s2 close enough, the path segment between
s1 and s2 will look like a straight line, see Fig. 10B. This intuition can be more formally
stated as follows: consider an arbitrary ∆ > 0,

• there exists a δ1 such that, if ‖q(s2)− q(s1)‖ ≤ δ1, then

d(q(s)s∈[s1,s2],Pstr(q(s1),q(s2))) < ∆/3; (11)

• there exists δ2 such that, if ‖q(s2)− q(s1)‖ ≤ δ2, then

‖u(s1)− uq(s1)→q(s2))‖ < η/6 and ‖u(s2)− uq(s1)→q(s2))‖ < η/6, (12)

where η is defined in (H3).

A B

Figure 10: Completeness of AVP-RRT. A : Existence of an admissible velocity profile
above an approximated path. B : Approximation of a given smooth path.

Divide now the path P into n subpaths P1,. . . ,Pn of lengths approximately δ
def
=

min(δ1, δ2). Let qi,ui denote the starting configuration and unit tangent vector of

subpath Pi. Consider the balls Bi centered on the qi and having radius ǫ, where ǫ
def
= ηδ

12 .
With probability 1, there will exist a time in the sampling process when

(s1) n consecutive random configurations q̂1, . . . , q̂1 are sampled in B1, . . . , Bn respec-
tively;

(s2) qstart is selected for connection attempt towards q̂1, and the random ustart verifies
‖ustart − uqstart→q1

‖ < 2η/3. The interpolation results in a new vertex V1 and a

new subpath P̂1 connecting qstart to V1;

(s3) for i ∈ [1, n − 1], Vi is selected for connection attempt to q̂i+1, resulting in a new
vertex Vi+1 and a new subpath P̂i connecting Vi to Vi+1.

Note that (s2) and (s3) are possible since, by (H1), the number of connection attempts
K grows linearly with the number of existing vertices in the tree.

We first prove that, for all i ∈ [0, n], we have ‖ûi − ui‖ < 2η/3. At rank 0, the
property is true owing to (s2). For i ≥ 1, we have

• ‖ûi − uq̂i−1→q̂i
‖ = 0 by (H2);

28

• ‖uq̂i−1→q̂i
− uqi−1→qi

‖ < 2ǫ/δ = η/6 by the fact that each qi is contained in the
ball Bi;

• ‖uqi−1→qi
− ui‖ < η/6 by (12).

Applying triangle inequality yields ‖ûi − ui‖ < 2η/3.
Next, we prove for all i ∈ [0, n− 1] that d(P̂i,Pi) < ∆. Note that

• ‖ûi − ui‖ < 2η/3 by the above reasoning;

• ‖ui − uqi→qi+1
‖ < η/6 by (12);

• ‖uqi→qi+1
− uq̂i→q̂i+1

‖ < 2ǫ/δ = η/6 by the fact that each qi is contained in the
ball Bi.

Thus, by triangle inequality, we have ‖ûi−uq̂i→q̂i+1
‖ < η. By (H3), we have d(P̂i,Pstr(q̂1, q̂2)) <

∆/3. Next, d(Pstr(q̂1, q̂2),Pstr(q1,q2)) can be made smaller than ∆/3 for judicious
choices of ǫ and δ. Finally, we have d(Pi,Pstr(q(s1),q(s2))) < ∆/3 by (11). Applying
the triangle inequality again, we obtain d(P̂i,Pi) < ∆. ✷

Proposition 2 Property 2 is true.

Proof Consider a path P̂ obtained by the sampling process, i.e. P̂ is composed of n
interpolated path segments P̂1,. . . ,P̂n. Let v1,. . . ,vn be the corresponding subdivisions
of the associated velocity profile v. We prove by induction on i ∈ [0, n] that the con-
catenated profile [v1, . . . , vi] is contained within the velocity band propagated by AVP.

For i = 0, i.e., at the start vertex, v(0) = 0 is contained within the initial velocity
band, which is [0, 0]. Assume that the statement holds at i. This implies in particular
that the final value of vi, which is also the initial value of vi+1, belongs to [vmin, vmax],
where (vmin, vmax) are the values returned by AVP at step i. Next, consider the velocity
band that AVP propagates at step i + 1 from [vmin, vmax]. Since vi+1(0) ∈ [vmin, vmax]
and that vi+1 is continuous, the whole profile vi+1 will be contained, by construction, in
the velocity band propagated by AVP. ✷

We can now prove the probabilistic completeness for a class of AVP-based planners.

Theorem 2 An AVP-based planner that verifies Properties 1 and 2 is probabilistically
complete.

Proof Assume that there exists a smooth state-space trajectory Π that solves the query,
with ∆-clearance in the state space, i.e., every smooth trajectory Π̂ such that d(Π, Π̂) ≤
∆ also solves the query 8. Let P be the underlying path of Π in the configuration
space. By Property 1, with probability 1, there exists a time when the sampling process
will generate a smooth path P̂ such that d(P, P̂) ≤ ∆/2. One can then construct,
by continuity, a velocity profile v̂ above P̂ , such that the time-parameterization of P̂
according to v̂ yields a trajectory Π̂ within a radius ∆ of Π (see Fig. 10A). As Π has
∆-clearance, Π̂ also solves the query. Thus, by Property 2, the velocity profile (or time-
parameterization) v̂ must be contained within the velocity band propagated by AVP,
which implies finally that P̂ can be successfully time-parameterized in the last step of
the planner. ✷

8Note that this property presupposes that the robot is fully-actuated, see also the paragraph “Class
of systems where AVP is applicable” in Section 5.

29

B Comparison of AVP-RRT with KNN-RRT on a 2-DOF

pendulum

Here, we detail the implementation of the standard state-space planner KNN-RRT and
the comparison of this planner with AVP-RRT. The full source code for this comparison
is available at https://github.com/stephane-caron/avp-rrt-rss-2013. Note that,
for fairness, all the algorithms considered here were implemented in Python (including
AVP). Thus, the presented computation times, in particular those of AVP-RRT, should
not be considered in absolute terms.

B.1 KNN-RRT

B.1.1 Overall algorithm

Our implementation of RRT in the state-space [LaValle and Kuffner, 2001] is detailed
in Boxes 4 and 5.

Box 4: KNN RRT(xinit,xgoal)

1: T .INITIALIZE(xinit)
2: for rep = 1 to Nmax rep do
3: xrand ← RANDOM STATE() if mod(rep,5) 6= 0 else xgoal

4: xnew ← EXTEND(T ,xrand)
5: T .ADD VERTEX(xnew)
6: xnew2 ← EXTEND(xnew,xgoal)
7: if d(xnew,xgoal) ≤ ǫ or d(xnew2,xgoal) ≤ ǫ then
8: return Success
9: end if

10: end for
11: return Failure

Box 5: EXTEND(T ,xrand)

1: for k = 1 to K do
2: xk

near ← KTH NEAREST NEIGHBOR(T ,xrand, k)
3: xk

new ← STEER(xk
near,xrand)

4: end for
5: return argmink d(x

k
new,xrand)

Steer-to-goal frequency We asserted the efficiency of the following strategy: every
five extension attempts, try to steer directly to xgoal (by setting xrand = xgoal on line 3
of Box 4). See also the discussion in LaValle and Kuffner [2001], p. 387, about the use
of uni-directional and bi-directional RRTs. We observed that the choice of the steer-
to-goal frequency (every 5, 10, etc., extension attempts) did not significantly alter the
performance of the algorithm, except when it is too large, e.g. once every two extension
attempts.

30

https://github.com/stephane-caron/avp-rrt-rss-2013

Metric The metric for the neighbors search in EXTEND (Box 5) and to assess whether
the goal has been reached (line 7 of Box 4) was defined as:

d(xa,xb) = d ((qa,va), (qb,vb))

=

∑
j=1,2

√
1− cos(qaj − qbj)

4
+

∑
j=1,2 |vaj − vbj|

4Vmax
, (13)

where Vmax denotes the maximum velocity bound set in the random sampler (function
RANDOM STATE() in Box 4). This simple metric is similar to an Euclidean metric
but takes into account the periodicity of the joint values.

Termination condition We defined the goal area as a ball of radius ǫ = 10−2 for the
metric (13) around the goal state xgoal. As an example, d(xa,xa) = ǫ corresponds to a
maximum angular difference of ∆q1 ≈ 0.057 rad ≈ 3.24 degrees in the first joint.

This choice is connected to that of the integration time step (used e.g. in Forward
Dynamics computations in section B.1.2), which we set to δt = 0.01 s. Indeed, the
average angular velocities we observed in our benchmark was around V̄ = 5 rad.s−1

for the first joint, which corresponds to an average instantaneous displacement V̄ · δt ≈
5.10−2 rad of the same order as ∆q1 above.

Nearest-neighbor heuristic Instead of considering only extensions from the nearest
neighbor, as has commonly been done, we considered the “best” extension from the K
nearest neighbors (line 5 in Box 5), i.e. the extension yielding the state closest to xrand

for the metric d (cf. Equation (13)).

B.1.2 Local steering

Regarding the local steering scheme (STEER on line 3 of Box 5), there are two main
approaches, corresponding to the two sides of the equation of motion : state-based and
control-based steering [Caron et al., 2014].

Control-based steering In this approach, a control input τ(t) is computed first. It
generates a given trajectory computable by forward dynamics. Because τ(t) is computed
beforehand, there is no direct control on the end-state of the trajectory. To palliate this,
the function τ(t) is then updated, with or without feedback on the end-state, until some
satisfactory result is obtained or a computation budget is exhausted. For example, in
works such as LaValle and Kuffner [2001], Hsu et al. [2002], random functions u are
sampled from the set of piecewise-constant functions. A number of them are tried and
only the one bringing the system closest to the target is retained. Linear-Quadratic
Regulation [Perez et al., 2012, Tedrake, 2009] is another example of control-based steer-
ing where the function u is computed as the optimal policy for a linear approximation
of the system dynamics (given a quadratic cost function).

In the present work, we followed the control-based approach from LaValle and Kuffner
[2001], Hsu et al. [2002], as described by Box 6. The random control is a stationary
(τ1, τ2) sampled as:

(τ1, τ2) ∼ U([−τ
max
1 , τmax

1]× [−τmax
2 , τmax

2]).

31

where U denotes uniform sampling from a set. The random time duration ∆t is sampled
uniformly in [δt,∆tmax] where ∆tmax is the maximum duration of local trajectories
(parameter to be tuned), and δt is the time step for the forward dynamics integration
(set to δt = 0.01 s as discussed in Section B.1.1). The number of local trajectories to be
tested, Nlocal trajs, is also a parameter to be tuned.

Box 6: STEER(xnear,xrand)

1: for p = 1 to Nlocal trajs do
2: u← RANDOM CONTROL(τmax

1 , τmax
2)

3: ∆t← RANDOM DURATION(∆tmax)
4: xp ← FORWARD DYNAMICS(xnear,u,∆t)
5: end for
6: return argminpd(x

p,xrand)

State-based steering In this approach, a trajectory q̃(t) is computed first. For
instance, q̃ can be a Bezier curve matching the initial and target configurations and
velocities. The next step is then to compute a control that makes the system track it.
For fully- or over-actuated system, this can done using inverse dynamics. If no suitable
controls exist, the trajectory is rejected. Note that both the space ℑ(q̃) and timing t
impact the dynamics of the system, and therefore the existence of admissible controls.
Bezier curves or B-splines will conveniently solve the spatial part of the problem, but
their timing is arbitrary, which tends to result in invalid controls and needs to be properly
cared for.

To enable meaningful comparisons with AVP-RRT, we considered the simple state-
based steering described in Box 7. Trying to design the best possible nonlinear controller
for the double pendulum would be out of the scope of this work, as it would imply either
problem-specific tunings or substantial modifications to the core RRT algorithm [as done
e.g. in Perez et al., 2012].

Box 7: STEER(xnear,xrand)

1: for 10 trials of T ∼ U([0.01, 2.]) do
2: q̃← INTERPOLATE(T,xnear,xrand)
3: τ̃ := INVERSE DYNAMICS(q̃(t), ˙̃q(t), ¨̃q(t))
4: t† = sup{t||τ̃ (t)| ≤ τmax}
5: if t† > 0 then
6: return q̃(t†)
7: end if
8: end for
9: return failure

Here, INTERPOLATE(T,xa,xb) returns a third-order polynomial Pi(t) such that
Pi(0) = qai, P ′

i (0) = vai, Pi(T) = qbi, P ′
i (T) = vbi, and our local planner tries 10

different values of T between 0.01 s and 2 s. We use inverse dynamics at each time step

32

of the trajectory to check if a control τ̃(t) is within torque limits. The trajectory is cut
at the first inadmissible control.

Comparing the two approaches On the pendulum, state-based steering yielded
RRTs with slower exploration speeds compared to control-based steering, as illustrated
in Figure 11. This slowness is likely due to the uniform sampling in a wide velocity range
[−Vmax, Vmax], which resulted in a large fraction of trajectories exceeding torque limits.
However, despite a better exploration of the state space, trajectories from control-based
steering systematically ended outside of the goal area. To palliate this, we added a
subsequent step : from each state reached by control-based steering, connect to the
goal area using state-based steering. Thus, if a state is reached that is not in the
goal area but from which steering to goal is easy, this last step will take care of the
final connection. However, this patch improved only marginally the success rate of the
planner. In practice, trajectories from control-based steering tend to end at energetic
states from which steering to goal is difficult. As such, we found that this steering
approach was not performing well on the pendulum and turned to state-based steering.

20

0

20

20

0

20

20

0

20

20

0

20

Figure 11: Comparison of control-based and state-based steering for K = 1 (left-top),
K = 10 (right-top), K = 40 (left-bottom) and K = 100 (right-bottom). Computation
time is fixed, which explains why there are more points for small values of K. The
X-axis represents the angle of the first joint and the Y-axis its velocity. The trees grown
by the state-based and control-based methods are in red and blue, respectively. The
goal area is depicted by the red ellipse on the left side. Control-based steering yields
better exploration of the state space, but fails to connect to the goal area.

Let us remark here that, although AVP-RRT follows the state-based paradigm (it
indeed interpolates paths in configuration space and then computes feasible velocities

33

along the path using Bobrow-like approach, which includes inverse dynamics computa-
tions), it is much more successful. The reason for this lies in AVP : when the interval
of feasible velocities is small, a randomized approach will have a high probability of
sampling unreachable velocities. Therefore, it will fail most of the time. Using AVP, the
set of reachable velocities is exactly computed and this failure factor disappears. With
AVP-RRT, failures only occur from “unlucky” sampling in the configuration space. Note
however that the algorithm only saves and propagates the norm of the velocity vectors,
not their directions, which may make the algorithm probabilistically incomplete (cf.
discussion in Section 5).

B.1.3 Fine-tuning of KNN-RRT

Based on the above results, we now focus on KNN-RRTs with state-based steering for
the remainder of this section. The parameters to be tuned are :

• Nlocal trajs: number of local trajectories tested in each call to STEER;

• ∆tmax: maximum duration of each local trajectory.

The values we tested for these two parameters are summed up in table 3. The parameters

Number of trials Nlocal trajs ∆tmax

10 1 0.2
10 30 0.2
10 80 0.2

20 20 0.5
20 20 1.0
20 20 2.0

Table 3: Parameter sets for each test.

we do not tune are :

• Maximum velocity Vmax for sampling velocities. We set Vmax = 50 rad.s−1, which
is about twice the maximum velocity observed in the successful trials of AVP-RRT;

• Number of neighbors K. In this tuning phase, we set K = 10. Other values of K
will be tested in the final comparison with AVP in section B.2;

• Space-time precision (ǫ, δt): as discussed in Section B.1.1, we chose ǫ = 0.01 and
δt = 0.01 s.

Finally, in this tuning phase, we set the torque limit as (τmax
1 , τmax

2) = (13, 7) N.m,
which are relatively “slack” values, in order to obtain faster termination times for RRT.
Tighter values such as (τmax

1 , τmax
2) = (11, 5) N.m will be tested in our final comparison

with AVP-RRT in section B.2.
Fig. 12A shows the result of simulations for different values of Nlocal trajs. One can

note that the performance of RRT is similar for values 10 and 30, but gets worse for

34

A B

10
0

10
1

10
2

10
3

10
4

0.00

0.05

0.10

0.15

0.20

ajs

Figure 12: Minimum distance to the goal as a function of time for different values of
Nlocal trajs and ∆tmax. At each instant, the minimum distance of the tree to the goal is
computed. The average of this value across the 10 trials of each set is drawn in bold,
while shaded areas indicate standard deviations. A: tuning of Nlocal trajs. B: tuning of
∆tmax.

80. Based on this observation, we chose Nlocal trajs = 20 for the final comparison in
section B.2.

Fig. 12B shows the simulation results for various values of ∆tmax. Observe that the
performance of RRT is similar for the three tested values, with smaller values (e.g. 0.5 s)
performing better earlier in the trial and larger values (e.g. 2.0 s) performing better
later on. We also noted that smaller values of ∆tmax such as 0.1 s or 0.2 s tended to
yield poorer results (not shown here). Our choice for the final comparison was thus
∆tmax = 1.0 s.

B.2 Comparing KNN-RRT and AVP-RRT

In this section, we compare the performance of KNN-RRT (for K ∈ {1, 10, 40, 100},
the other parameters being set to the values discussed in the previous section) against
AVP-RRT with 10 neighbors. For practical reasons, we further limited the execution
time of every trial to 104 s, which had no impact in most cases or otherwise induced a
slight bias in favor of RRT (since we took 104 s as our estimate of the “search time”
when RRT does not terminate within this time limit).

We ran the simulations for two instances of the problem, namely

• (τmax
1 , τmax

2) = (11, 7) N.m;

• (τmax
1 , τmax

2) = (11, 5) N.m.

For each problem instance, we ran 40 trials for each planner AVP-RRT, state-space RRT
with 1 nearest neighbor (RRT-1), RRT-10, RRT-40 and RRT-100. Note that for each
trial i, all the planners received the same sequence of random states

Xi =
{
x
(i)
rand(t) ∈ R4

∣∣∣ t ∈ N
}
∼ U

(
(]− π, π]2 × [−Vmax,+Vmax]

2)N
)
,

35

although AVP-RRT only used the first two coordinates of each sample since it plans
in the configuration space. The results of this benchmark were already illustrated in
Fig. 7. Additional details are provided in Tables 4 and 5. All trials of AVP successfully
terminated within the time limit.

For (τmax
1 , τmax

2) = (11, 7), the average search time was 3.3 min. Among the KNN-
RRT, RRT-40 performed best with a success rate of 92.5% and an average computation
time ca. 45 min, which is however 13.4 times slower than AVP-RRT.

For (τmax
1 , τmax

2) = (11, 7), the average search time was 9.8 min. Among the KNN-
RRT, again RRT-40 performed best in terms of search time (54.6 min on average, which
was 5.6 times slower than AVP-RRT), but RRT-100 performed best in terms of success
rate within the 104s time limit (92.5%).

Planner Success rate Search time (min)

AVP-RRT 100% 3.3±2.6

RRT-1 40% 70.0±34.1

RRT-10 82.5% 53.1±59.5

RRT-40 92.5% 44.6±42.6

RRT-100 82.5% 88.4±54.0

Table 4: Comparison of AVP-RRT and KNN-RRT for (τmax
1 , τmax

2) = (11, 7).

Planner Success rate Search time (min)

AVP-RRT 100% 9.8±12.1

RRT-1 47.5% 63.8±36.6

RRT-10 85% 56.3±60.1

RRT-40 87.5% 54.6±52.2

RRT-100 92.5% 81.2±46.7

Table 5: Comparison of AVP-RRT and KNN-RRT for (τmax
1 , τmax

2) = (11, 5).

C Comparison of AVP-RRT with KPIECE on a 6-DOF
and a 12-DOF manipulators

Here, we detail the comparison between AVP-RRT and the OMPL implementation of
KPIECE [Sucan and Kavraki, 2012, Sucan et al., 2012] on a kinodynamic problem in-
volving a n-DOF manipulators, for 2 ≤ n ≤ 12. The full source code for this comparison
is available at https://github.com/quangounet/kpiece-comparison.

C.1 KPIECE

We used the implementation of KPIECE available in the Open Motion Planning Library
(OMPL) [Sucan et al., 2012]. The library provides utilities such as function templates,
data structures, and generic implementations of various planners, written in C++ with
Python interfaces. It, however, does not provide modules such as collision checker and

36

https://github.com/quangounet/kpiece-comparison

modules for visualization purposes. Therefore, we used OpenRAVE [Diankov, 2010] for
collision checking and visualization.

C.1.1 Overall algorithm

KPIECE grows a tree of motions in the state-space. A motion ν is a tuple (s, u, t),
where s is the initial state of the motion, u is the control being applied to s, and t is
the control duration. Initially the tree contains only one motion νstart. Then in each
iteration the algorithm proceeds by first selecting a motion on the tree to expand from.
A control input is then selected and applied to the state for a time duration. Finally,
the algorithm will evaluate the progress that has been made so far.

To select an existing motion from the tree, KPIECE utilizes information obtained
from projecting states in the state-space Q into some low-dimensional Euclidean space
Rk. Low-dimensionality of the space allows the planner to discretize the space into cells.
KPIECE will then score each cell based on several criteria (see [Sucan and Kavraki, 2012]
for more detail). Based on an assumption that the coverage of the low-dimensional
Euclidean space can reflect the true coverage of the state-space, KPIECE uses its cell
scoring system to help bias the exploration towards unexplored area.

For the following simulations, we used KPIECE planner implementation in C++
provided via the OMPL library. Since the library only provides generic implementation
of the planner, we also needed to implement some problem specific functions for the
planner such as state projection and state propagation. Those functions were also im-
plemented in C++. We will give details on state projection and state propagation rules
we used in our simulations.

State projection Since the state-space exploration is mainly guided by the projec-
tion (as well as their cell scoring), more meaningful projections which better reflect the
progress of the planner will help improve its performance. For planning problems for a
robot manipulator, we used a projection that projects a state to an end-effector position
in 3D space. Sucan and Kavraki [2012] suggested that when planning for a manipulator
motion, the tool-tip position in 3D space is representative. However, by simply discard-
ing all the velocity components we may lose information which can essentially help solve
the problem. Thus, we decided to include also the norm of velocity into the projection.
This inclusion of the norm of velocity was also used in [Sucan and Kavraki, 2012] when
planning for a modular robot. Therefore, the projection projects a state into a space of
dimension 4.

State propagation KPIECE uses a control-based steering method. It applies a se-
lected control to a state over a number of propagation steps to reach a new state. In our
cases, since the robot we were using was position-controlled, our control input were joint
accelerations. Let the state be (q, q̇), where q and q̇ are the joint values and velocities,
respectively. The new state (q+, q̇+) resulting from applying a control q̈ to (q, q̇) over
a short time interval ∆t can be computed from

q+ = q+∆tq̇+ 0.5(∆t)2q̈ (14)

q̇+ = q̇+∆tq̈. (15)

37

C.1.2 Fine-tuning of KPIECE

We employed L2 norm as a distance metric in order not to bias the planning towards
any heuristics. Next, in order for the planner not to spend too much running time into
simulations for fine-tuning, we selected the threshold value to be 0.1. The threshold is
used to decide whether a state has reached the goal or not. If the distance from a state
to the goal, according to the given distance metric, is less than the selected threshold,
the problem is considered as solved. Then we tested the algorithm with a number of
sets of parameters to find the best set of parameters.

At this stage, the testing environment consisted only of the models of the Denso
VS-060 manipulator and its base. There was no other object in the environment. Here,
to check validity of a state, we need to check for only robot self-collision. In the following
runs, we planned motions for only the first two joints of the robot (the ones closest to
the robot base). The robot had to move from (0, 0, 0, 0) to (1, 1, 0, 0), where the first
two components of the tuples are joint values and the others are joint velocities. We
set the goal bias to 0.2. With chosen parameters and projection, we ran simulations
with difference combinations of cell size, c, and propagation step size, p. Note that
here we assigned cell size, which defines the resolution of discretization of the projecting
space, to be equal in every dimension. Both cell size and propagation step size were
chosen from a set {0.01, 0.05, 0.1, 0.5, 1.0}. We tested for all different 25 combinations
of the parameters and recorded the running time of the planner. We ran 50 simulations
for each pair (c, p). For any value of cell size, we noticed that the propagation step
size of 0.05 performed best. For p = 0.05, the values c being 0.05, 0.1, 1.0 performed
better than the rest. The resulting running times using those values of cell size did not
significantly differ from each other. The differences were in order of 1 ms. Therefore, in
the following section, we repeated all the simulations with three different pairs (c, p) ∈
{(0.05, 0.05), (0.1, 0.05), (1.0, 0.05)}.

C.2 KPIECE simulation results and comparison with AVP-RRT

With the previously selected parameters, we conducted simulations as follows. First of
all, to show how running time of KPIECE and AVP-RRT scale when the dimensionality
of the problem increases, we used both planners to plan motions for a n−DOF robot,
with 2 ≤ n ≤ 12. For this, we concatenated two Denso VS-060 manipulator manipulators
together into a composite 12-DOF manipulator and used the first n joints of that robot.

The robot was to move from all-zeros configuration to all-ones configuration. Initial
and final velocities were set to zero. There was no other obstacle in the scene. Since
the implementation of KPIECE is unidirectional, we also used a unidirectional version
of AVP-RRT. The AVP-RRT implementation was written in Python. Only the time-
parameterization algorithm was implemented in C++.

We gave each planner 200 s. for each run, and simulated 20 runs for each condition.
For KPIECE we tested different values of cell sizes (0.05, 0.1, and 1.0). Fig. 13A shows
average running times over 20 runs. From the figure, the three values of the cell size pro-
duced similar results. Although KPIECE performed well when planning for low numbers
of DOFs, the running time increased very quickly (exponentially) with increasing num-
bers of DOFs. Correlatively, the success rate when planning using KPIECE dropped
rapidly when the number of DOFs increased, as can be seen from Fig. 13A. When the

38

number of DOFs was higher than 8, KPIECE failed to find any solution within 200 s.
The computation time for AVP-RRT also increased exponentially with the number of
DOFs but the rate was much lower as compared to KPIECE.

A B

2 4 6 8 10 12
n DOFs

10-1

100

101

102

103

A
v
e
ra
g
e
 r
u
n
n
in
g
 t
im
e
 (
s.
)

KPIECE (cell size = 0.05)
KPIECE (cell size = 0.1)
KPIECE (cell size = 1.0)
AVP-RRT
time limlit

2 4 6 8 10 12
n DOFs

0

20

40

60

80

100

S
u
cc
e
ss
 r
a
te
 (
%
)

KPIECE (cell size = 0.05)
KPIECE (cell size = 0.1)
KPIECE (cell size = 1.0)
AVP-RRT

Figure 13: A : Average running time of KPIECE and AVP-RRT (black squares) taken
over 20 runs as a function of the number of DOF. For KPIECE, simulations were run
with three different cell sizes: 0.05 (red triangles), 0.1 (green circles), and 1.0 (blue
stars). B : Succcess rates of KPIECE and AVP-RRT over 20 runs. When the number
of DOFs was higher than 8, KPIECE failed to find any solution within the given time
limit of 200 s.

Finally, we considered an environment similar to that of our experiment on non-
prehensile object transportation of Section 4.2. The tray and the bottle were, however,
removed from the (6-DOF) robot model. The problem was therefore less constrained.
We considered here only bounds on joint values, joint velocities, and joint accelerations.
We shifted the lower edge of the opening upward for 13 cm. and set the opening height
to be lower (25 cm. in this case) to make the problem more interesting. Then for each
run, both planners had a time limit of 600 s to find a motion for the robot to move from
one side of the wall to the other. We repeated simulations 20 times for both planners.
For KPIECE, since the performance when using different cell size from {0.05, 0.1, 1.0}
did not differ much from each other, we chose to ran simulations with cell size c = 0.05.

The average running time for AVP-RRT in this case was 68.67 s with a success rate
of 100%. The average number of nodes in the tree when the planner terminated was
60.15 and the average number of trajectory segments of the solutions was 8.60. Fig. 14
shows the scene used in simulations as well as an example of a solution trajectory found
by AVP-RRT. On the other hand, KPIECE could not find any solution, in any run,
within the given time limit.

References

J.E. Bobrow. Optimal robot path planning using the minimum-time criterion. IEEE
Journal of Robotics and Automation, 4(4):443–450, 1988.

J.E. Bobrow, S. Dubowsky, and JS Gibson. Time-optimal control of robotic manipula-

39

A B

Figure 14: The scene used in the last experiment. Both KPIECE and AVP-RRT were
to find a motion for the robot to move from one side of the wall to the other. A: the
start configuration of the robot. B: the goal configuration of the robot. The pink line in
the figure indicates an end-effector path from a solution found by AVP-RRT. KPIECE
could not find any solution, in any run, within the given time limit of 600 s.

tors along specified paths. The International Journal of Robotics Research, 4(3):3–17,
1985.

F. Bullo and K. M. Lynch. Kinematic controllability for decoupled trajectory planning in
underactuated mechanical systems. IEEE Transactions on Robotics and Automation,
17(4):402–412, 2001.

S. Caron, Q.-C. Pham, and Y. Nakamura. Completeness of randomized kinodynamic
planners with state-based steering. In Proceedings of the International Conference on
Robotics and Automation, pages 5818–5823, 2014.

R. Diankov. Automated Construction of Robotic Manipulation Programs. PhD
thesis, Carnegie Mellon University, Robotics Institute, August 2010. URL
http://www.programmingvision.com/rosen_diankov_thesis.pdf.

B. Donald, P. Xavier, J. Canny, and J. Reif. Kinodynamic motion planning. Journal of
the ACM (JACM), 40(5):1048–1066, 1993.

A. Escande, A. Kheddar, and S. Miossec. Planning contact points for humanoid robots.
Robotics and Autonomous Systems, 61(5):428–442, 2013.

R. Geraerts and M.H. Overmars. Creating high-quality paths for motion planning. The
International Journal of Robotics Research, 26(8):845–863, 2007.

K. Hauser. Fast interpolation and time-optimization with contact. The International
Journal of Robotics Research, 33(9):1231–1250, 2014.

K. Hauser, T. Bretl, J.-C. Latombe, K. Harada, and B. Wilcox. Motion planning for
legged robots on varied terrain. The International Journal of Robotics Research, 27
(11-12):1325–1349, 2008.

40

http://www.programmingvision.com/rosen_diankov_thesis.pdf

D. Hsu, R. Kindel, J.-C. Latombe, and S. Rock. Randomized kinodynamic motion
planning with moving obstacles. The International Journal of Robotics Research, 21
(3):233–255, 2002.

D. Hsu, T. Jiang, J. Reif, and Z. Sun. The bridge test for sampling narrow passages
with probabilistic roadmap planners. In Robotics and Automation, 2003. Proceedings.
ICRA’03. IEEE International Conference on, volume 3, pages 4420–4426. IEEE, 2003.

J. Johnson and K. Hauser. Optimal acceleration-bounded trajectory planning in dy-
namic environments along a specified path. In IEEE International Conference on
Robotics and Automation, pages 2035–2041, 2012.

M. Kalakrishnan, S. Chitta, E. Theodorou, P. Pastor, and S. Schaal. Stomp: Stochastic
trajectory optimization for motion planning. In IEEE International Conference on
Robotics and Automation, pages 4569–4574, 2011.

K. Kant and S. W. Zucker. Toward efficient trajectory planning: The path-velocity
decomposition. The International Journal of Robotics Research, 5(3):72–89, 1986.

Sertac Karaman and Emilio Frazzoli. Sampling-based algorithms for optimal motion
planning. The International Journal of Robotics Research, 30(7):846–894, 2011.

L.E. Kavraki, P. Svestka, J.C. Latombe, and M.H. Overmars. Probabilistic roadmaps
for path planning in high-dimensional configuration spaces. Robotics and Automation,
IEEE Transactions on, 12(4):566–580, 1996.

J.J. Kuffner and S.M. LaValle. RRT-connect: An efficient approach to single-query path
planning. In IEEE International Conference on Robotics and Automation, 2000.

J.J. Kuffner, S. Kagami, K. Nishiwaki, M. Inaba, and H. Inoue. Dynamically-stable
motion planning for humanoid robots. Autonomous Robots, 12(1):105–118, 2002.

Tobias Kunz and Mike Stilman. Kinodynamic rrts with fixed time step and best-input
extension are not probabilistically complete. In Algorithmic Foundations of Robotics
XI, pages 233–244. Springer, 2015.

J.-P. Laumond. Robot Motion Planning and Control. Springer-Verlag, New York, 1998.

S.M. LaValle and J.J. Kuffner. Randomized kinodynamic planning. The International
Journal of Robotics Research, 20(5):378–400, 2001.

Puttichai Lertkultanon and Quang-Cuong Pham. Dynamic non-prehensile object trans-
portation. In Control Automation Robotics & Vision (ICARCV), 2014 13th Interna-
tional Conference on, pages 1392–1397. IEEE, 2014.

Yanbo Li, Zakary Littlefield, and Kostas E Bekris. Sparse methods for efficient asymp-
totically optimal kinodynamic planning. In Algorithmic Foundations of Robotics XI,
pages 263–282. Springer, 2015.

I. Mordatch, E. Todorov, and Z. Popović. Discovery of complex behaviors through
contact-invariant optimization. ACM Transactions on Graphics (TOG), 31(4):43,
2012.

41

Y. Nakamura and R. Mukherjee. Nonholonomic path planning of space robots via a
bidirectional approach. Robotics and Automation, IEEE Transactions on, 7(4):500–
514, 1991.

Georgios Papadopoulos, Hanna Kurniawati, and Nicholas M Patrikalakis. Analysis of
asymptotically optimal sampling-based motion planning algorithms for lipschitz con-
tinuous dynamical systems. arXiv preprint arXiv:1405.2872, 2014.

J. Peng and S. Akella. Coordinating multiple robots with kinodynamic constraints along
specified paths. The International Journal of Robotics Research, 24(4):295–310, 2005.

A. Perez, R. Platt, G. Konidaris, L. Kaelbling, and T. Lozano-Perez. LQR-RRT*: Opti-
mal sampling-based motion planning with automatically derived extension heuristics.
In IEEE International Conference on Robotics and Automation, 2012.

Q.-C. Pham. Planning manipulator trajectories under dynamics constraints using
minimum-time shortcuts. In Second IFToMM ASIAN Conference on Mechanism and
Machine Science, 2012.

Q.-C. Pham. A general, fast, and robust implementation of the time-optimal path
parameterization algorithm. IEEE Transactions on Robotics, 30:1533–1540, 2014.
doi: 10.1109/TRO.2014.2351113.

Q.-C. Pham, S. Caron, and Y. Nakamura. Kinodynamic planning in the configuration
space via velocity interval propagation. In Robotics: Science and System, 2013.

Quang-Cuong Pham and Olivier Stasse. Time-optimal path parameterization for
redundantly actuated robots: A numerical integration approach. Mechatronics,
IEEE/ASME Transactions on, 20(6):3257–3263, 2015.

M. Posa and R. Tedrake. Direct trajectory optimization of rigid body dynamical systems
through contact. In Algorithmic Foundations of Robotics X, pages 527–542. Springer,
2013.

N. Ratliff, M. Zucker, J.A. Bagnell, and S. Srinivasa. Chomp: Gradient optimiza-
tion techniques for efficient motion planning. In IEEE International Conference on
Robotics and Automation, pages 489–494, 2009.

Z. Shiller and S. Dubowsky. On the optimal control of robotic manipulators with actu-
ator and end-effector constraints. In IEEE International Conference on Robotics and
Automation, pages 614–620, 1985.

Z. Shiller and Y.R. Gwo. Dynamic motion planning of autonomous vehicles. IEEE
Transactions on Robotics and Automation, 7(2):241–249, 1991.

Z. Shiller and H.H. Lu. Computation of path constrained time optimal motions with
dynamic singularities. Journal of dynamic systems, measurement, and control, 114:
34, 1992.

K. Shin and N. McKay. Selection of near-minimum time geometric paths for robotic
manipulators. IEEE Transactions on Automatic Control, 31(6):501–511, 1986.

42

Alexander Shkolnik, Matthew Walter, and Russ Tedrake. Reachability-guided sam-
pling for planning under differential constraints. In Robotics and Automation, 2009.
ICRA’09. IEEE International Conference on, pages 2859–2865. IEEE, 2009.

T. Siméon, S. Leroy, and J.-P. Laumond. Path coordination for multiple mobile robots:
a resolution-complete algorithm. Robotics and Automation, IEEE Transactions on,
18(1):42–49, 2002.

J.J.E. Slotine and H.S. Yang. Improving the efficiency of time-optimal path-following
algorithms. IEEE Transactions on Robotics and Automation, 5(1):118–124, 1989.

Ioan Sucan and Lydia E Kavraki. A sampling-based tree planner for systems with
complex dynamics. Robotics, IEEE Transactions on, 28(1):116–131, 2012.

Ioan A Sucan, Mark Moll, and Lydia E Kavraki. The Open Motion Planning Library.
IEEE Robotics & Automation Magazine, 19:72–82, 2012.

W. Suleiman, F. Kanehiro, E. Yoshida, J.P. Laumond, and A. Monin. Time parame-
terization of humanoid-robot paths. IEEE Transactions on Robotics, 26(3):458–468,
2010.

R. Tedrake. LQR-trees: Feedback motion planning on sparse randomized trees. In
Proceedings of Robotics: Science and Systems, Seattle, USA, 2009.

D. Verscheure, B. Demeulenaere, J. Swevers, J. De Schutter, and M. Diehl. Time-optimal
path tracking for robots: A convex optimization approach. IEEE Transactions on
Automatic Control, 54(10):2318–2327, 2009.

M. Vukobratovic, B. Borovac, and D. Surdilovic. Zero-moment point–proper interpre-
tation and new applications. In IEEE/RAS International Conference on Humanoid
Robots, 2001.

L. Zlajpah. On time optimal path control of manipulators with bounded joint veloc-
ities and torques. In IEEE International Conference on Robotics and Automation,
volume 2, pages 1572–1577. IEEE, 1996.

43

	Introduction
	Propagating admissible velocities along a path
	Background: Time-Optimal Path Parameterization (TOPP)
	Admissible Velocity Propagation (AVP)
	Remarks

	Kinodynamic trajectory planning using AVP
	Combining AVP with sampling-based planners
	Implementation and variations

	Examples of applications
	Double pendulum with severe torque bounds
	Obstruction to quasi-static planning
	Solution using AVP-RRT
	Comparison with state-space RRT

	Non-prehensile object transportation
	Obstruction to quasi-static planning
	Solution using AVP-RRT
	Comparison with OMPL-KPIECE

	Discussion
	Probabilistic completeness of AVP-based planners
	Comparison of AVP-RRT with KNN-RRT on a 2-DOF pendulum
	KNN-RRT
	Overall algorithm
	Local steering
	Fine-tuning of KNN-RRT

	Comparing KNN-RRT and AVP-RRT

	Comparison of AVP-RRT with KPIECE on a 6-DOF and a 12-DOF manipulators
	KPIECE
	Overall algorithm
	Fine-tuning of KPIECE

	KPIECE simulation results and comparison with AVP-RRT

