
Teleoperation System Design of Valve Turning Motions in Degraded
Communication Conditions

Stéphane CARON, Yoshihiko NAKAMURA
Department of Mechano-Informatics, University of Tokyo, Japan

1. Introduction

During the DARPA Robotics Challenge1 (DRC),

robots were expected to solve a number of tasks under

teleoperation by a human operator. Limits in execu-

tion time and teleoperation bandwidth required teams

to implement some level of autonomy on their robots,

yet meaningful input could still be provided by the

operator on a regular basis via the team’s Operator

Control System (OCS). An OCS is an execution-level

interactive human-robot teleoperation system, often

integrated in a single Graphical User Interface (GUI)

to reduce the number of switches for the operator.

The purpose of the present paper is to report on

the development of Team Hydra’s OCS for the DRC in

the context of the valve-turning task. We describe the

design of the system as well as the technical choices

made, meanwhile pointing out the underlying research

questions and directions for future work.

For the robot middleware, we chose ROS2 (the

“Robot Operating System”), on top of which we de-

velopped all of our system components. The GUI in

particular was integrated to RViz, the visualization

software from ROS, which comes with various exten-

sion mechanisms such as panels and interactive mark-

ers. Panels are areas of the GUI where one can add

arbitrary widgets connected to arbitrary commands.

Interactive markers will be detailed later on.

To realize the valve-turning task, we have de-

veloped a number of components, split between two

categories corresponding to perception and execution.

Perception components include the construction of an

environment model, identification of the valve posi-

tion, and estimation of contact locations. Execution

components include walking pattern generation, in-

verse kinematics and trajectory generation.

2. Perception Components Design
2·1 Environment Perception

We build a 3D point-cloud model of the en-

vironment using a 2D scanning-type laser range

sensor UTM-X002S (Hokuyo Automatic Co. Ltd)

tilted along the pitch axis by a MX-64 motor (Dy-

namixel). For this purpose, we used the ROS packages

hokuyo tilter and pointcloud tools implemented

by Kiyoshi Irie (Chiba Institute of Technology). Cal-

ibration between the environment model with respect

to the humanoid’s kinematic chain was done by man-

1http://www.theroboticschallenge.org/
2http://www.ros.org

ual identification of the kinematic transform between

the sensor base frame and the robot’s body. This ap-

proach has limited precision, as validation is done by

a human operator, and is sensible to joint-calibration

errors. Consequently, we prepared for execution-time

updates: when limbs of the humanoid appear in its

field-of-vision, the operator can tune the transform so

as to match them with the kinematic model.

Here, the human operator implements a feedback

loop between the point cloud and the robot’s kine-

matic model. This feedback loop could be automated,

e.g., by sampling points on the robot’s 3D mesh and

using point registration methods to match them in

the point-cloud. The underlying problem is to cal-

ibrate the sensor’s base transforms with respect to

the robot’s kinematic chain. Recent works such as [3]

have demonstrated the feasibility of an autonomous

solution to this problem using visual markers for si-

multaneous calibration of several sensory inputs.

2·2 Valve Identification

The position, orientation and size of the valve

are input by the human operator with feedback from

the point cloud. To enable this input, we developed

a model-fitting interface based using a custom RViz

panel and the interactive markers library3. In this

library, a “marker” consists in:

• a 3D mesh or a primitive shape (e.g., a box),

• a set of “controls”,

• a right-click menu.

The marker controls are graphical handles by which

the operator can translate or rotate the mesh along

any of its degrees of freedom (see Figure 1).

Algorithm 1 Model-fitting Procedure

1. Add the valve marker
(button from the valve panel)

2. Enable marker controls
(right-click menu of the valve marker)

3. Translate and rotate the valve mesh to match the
position and orientation given by the point cloud
(marker controls)

4. Adjust the scale of the mesh
(slider from the valve panel)

5. Iterate 3 and 4 until fitting is complete
6. Disable marker controls

(right-click menu of the valve marker)

3http://wiki.ros.org/interactive_markers



Fig.1 Interface of the Operator Control System with a model of the HRP4-R humanoid robot. Its head has been
replaced with an adjustable plate (in red) for the laser-range sensor frame. Panels on the left: default
“Displays” from RViz and a custom panel for IK control. Panels on the right: Ghost model, Walking,
Language and Wheel. The ghost model is used to preview IK results before execution on the real robot.
Walking markers can be used to control the Walking Pattern Generator [5]. The language panel is used
to query a large human-behavior database for postures [6]. Finally, the wheel panel allows to add/remove
the valve marker, update its scale, send the reaching and turning commands. It displays two sliders: one
for the estimate of the current wheel rotation, and the second for the desired turn angle. (Points above
the robot head are artifacts from the sensor.)

The operator then follows the model-fitting pro-

cedure described in Algorithm 1. Overall, there are

seven parameters to fit: the mesh’s scale, position and

orientation.

Although the complete execution of the proce-

dure takes less than a minute to a trained operation

(see the accompanying video [2]), this task ought to be

solved by the software as well, e.g., using point-cloud

registration methods [4].

2·3 Contact Location

The next step is to estimate the contact lo-

cations on the valve. To enable natural input of

contact coordinates with respect to a 3D mesh,

we developed a wrapper to interactive markers,

the manipulation markers library, which is publicly

available online.4 Manipulation markers consist of

• a 3D-meshed “parent” marker, and

• a set of primitive-meshed “contact” markers.

Contact markers are used to calculate the end-effector

poses (i.e., position and orientation) by which the

4https://github.com/Tastalian/manipulation_markers

robot makes contact with their parent mesh. They

can be added on-the-fly by the operator via the right-

click menu. Because their kinematic transform are

defined in the parent marker’s reference frame, mov-

ing the parent marker (in our case, turning the valve)

automatically updates the position and orientation of

each of its contact markers.

3. Execution Components Design

Our turning strategy relies on a single contact

between the palm of the robot’s left hand and the

outer rim of the valve. To avoid the need to move the

feet while turning, we further decided to apply only

quarter-turns at a time, with the robot periodically

reaching for the top of the valve to start the motion

again.

3·1 Walking Pattern Generator

First of all, the robot has to walk to the valve.

To achieve this purpose, we used the Walking Pat-

tern Generator (WPG) from [5], which allowed us to

abstract the task to the 2D ground position of the

Center-of-Mass (COM). Using an interactive marker



Fig.2 Simultaneous view of the experiment in the OCS (left) and from a video camera (right). The Hokuyo laser-
range sensor is mounted on top of a fixed plate set on top of the humanoid’s chest. Complete execution of
the task took around 10 minutes to the human operator, including on-the-spot recovery of a loss of contact
after three quarter-turns. See the accompanying video [2].

on the foot horizontal place, the operator evaluates

the point-cloud data before inputting the goal loca-

tion of the COM to the WPG. Then, after a 10-second

refresh interval, he or she can reiterate the process un-

til the robot is standing in front of the valve. Once a

satisfactory location is reached, we fix the foot loca-

tions on the ground and turn the valve with no addi-

tional call to the WPG.

3·2 Inverse Kinematics

The kinematic transform of a contact marker

with respect to the robot’s body frame can be used

to establish contact via Inverse Kinematics (IK) and

position control. For the former, we used RoKi [1], a

software library from the Motor Intelligence Lab. (Os-

aka Univ.). Given a set of end-effector poses (i.e., po-

sition and orientation) and a COM position (main-

tained above the foot support area for stability), it

could perform the whole-body inverse kinematics of

our 34-DOF robot model within milliseconds.

3·3 Interpolation of Reaching Trajectory

Using the reduction from joint-space to work-

space coordinates provided by the IK, we only con-

trol the left hand pose for the rest of the task. When

the operator sets the contact marker on the valve, we

compute two via-points from the current hand pose

to the contact pose. The first one lies between the

hand and the valve. The second one is closer to con-

tact and has a z -coordinate above that of the con-

tact point in order for the left hand to make contact

with a downward-pointing incidence vector. Finally, a

20-second trajectory is interpolated between the four

left-hand poses (initial, via-point 1, via-point 2, con-

tact) by using linear interpolation for the end-effector

position and spherical linear interpolation (Slerp) for

its orientation.

3·4 Control of the Valve Turning Motion

Once contact is made, we generate the valve turn-

ing motion by turning the valve manipulation marker

in the GUI and forwarding the resulting IK output

(where the left hand is bound to the contact marker)

to the position controller. However, to cope with the

limited bandwidth constraint, we further cut the op-

erator input to a single turning angle. As depicted in

Figure 1, to execute of a quarter-turn, the operator

sets the desired angle (“Update” slider) and presses

the command button. The relative angle is then the

only data sent to the robot field PC over the network,

at which point the latter will update its internal model

of the valve and perform the IK locally.

4. Valve Turning Experiment

We tested our framework with an HRP4-R hu-

manoid robot and a steel valve mounted on a metal

frame. Figure 2 shows a side-by-side comparison of

the simultaneous OCS view and real state of the robot

during operation. In the laboratory environment, it

took the operator 10 minutes to execute the task. See

the accompanying video [2].

Position estimation errors accumulate during ex-

ecution of the task. In the present experiment, after

reaching a third time for the top of the valve, the hu-

manoid did not properly establish contact. The op-

erator could notice that the valve did not turn with

the hand (e.g., by looking at its rims in the point

cloud view) and adapt to the situation by translating

or downscaling the wheel mesh in the OCS.

Contact state estimation ought to be done at

the robot level. Torque-controlled humanoids, or

position-controlled ones with force-torque sensors in

their wrist, can estimate the contact force directly.

The estimation is still possible with previous genera-

tion humanoids like HRP4 where force-torque sensors

are typically located in the ankles. Yet, it is more

involved as forces are only observed after propagation

along the kinematic chain.



5. Conclusion
In this paper, we described the various compo-

nents implemented by Team Hydra for the valve-

turning task of the Darpa Robotics Challgenge, from

perception to motion generation. We detailed how

we adapted our design to cope with the limited teleo-

pration bandwidth available during the challenge. Fi-

nally, we evaluated our OCS through experiments on

the HRP4 humanoid platform.

One of the goals of robotics research is to make

robots more autonomous. As such, some operator

tasks that we described in this paper ought to be done

autonomously by the software. These tasks include

the fitting of the valve to the point cloud, computa-

tion of the via points for the reach task, detection of

contact and potential slippage, etc.

Acknowledgments: This work was supported by the
New Energy and Industrial Technology Development Or-
ganization (NEDO), The International R&D and Demon-
stration Project on Robotic Field / Research and De-
velopment of Disaster-Response Robot Open Platform
(FY2014–FY2015).

The source code for the valve-turning OCS includes

ROS packages developed by Kiyoshi Irie (Chiba Institute

of Technology) for the Hokuyo sensor and Dynamixel mo-

tor, and by Yasuhiro Ishiguro for the integration between

ROS and OpenRTM-aist.

References

[1] RoKi - Robot Kinetics library, Motor Intelligence Lab,
Osaka University. Available online at http://www.mi.

ams.eng.osaka-u.ac.jp/software/roki.html, July
2015.

[2] Accompanying video. Online at https://scaron.

info/research/rsj-2015.html, July 2015.
[3] Oliver Birbach, Udo Frese, and Berthold Bäuml.

Rapid calibration of a multi-sensorial humanoids up-
per body: An automatic and self-contained approach.
The International Journal of Robotics Research, 34(4-
5):420–436, 2015.

[4] Radu Bogdan Rusu, Nico Blodow, and Michael Beetz.
Fast point feature histograms (fpfh) for 3d registra-
tion. In Robotics and Automation, 2009. ICRA’09.
IEEE International Conference on, pages 3212–3217.
IEEE, 2009.

[5] Carlos Santacruz and Yoshihiko Nakamura. Analytical
real-time pattern generation for trajectory modifica-
tion and footstep replanning of humanoid robots. In In-
telligent Robots and Systems (IROS), 2012 IEEE/RSJ
International Conference on, pages 2095–2100. IEEE,
2012.

[6] Wataru Takano and Yoshihiko Nakamura. Integrating
whole body motion primitives and natural language
for humanoid robots. In Humanoid Robots, 2008. Hu-
manoids 2008. 8th IEEE-RAS International Confer-
ence on, pages 708–713. IEEE, 2008.


