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1. Introduction

Humanoid robotics has spawned several fields of
active research. When it comes to dynamic motion
control, three lines of work stand out: reduced models
(combined with inverse kinematics), local controllers
and global planning.

The concept of Zero-Moment Point (ZMP) [17]
allows for simplified mathematical models of the com-
plex kinematic structure of humanoid robots; in par-
ticular, to generate walking patterns of humanoid
robots, [3] designed the “cart-table” model. Once a
walking trajectory has been decided under this re-
duced model, inverse kinematics is used to compute
back the whole-body posture. This approach enables
planning of dynamic trajectories in real-time, yet it
does not provide any completeness guarantee because
of the surjection to the simplified model.

Local controllers stem from the redundancy of
humanoid robots as articulated systems: objectives
such as achieving a given end-effector pose have in-
finitely many solutions, the free space of which can
be used to specify sub-objectives (obstacle avoidance,
energy consumption, etc.) This formulation has been
well studied in the literature and Jacobian-based so-
lutions designed for both inverse kinematics [9, 15]
and dynamics [5]. These methods yield smooth so-
lutions and can be used in real-time for whole-body
motion planning; they are, however, prone to fall into
local minima and present no completeness guarantee,
grounding the need for more global planners.

Randomized motion planning algorithms have
been developped and successfully applied to sys-
tems with a fair amount of DoFs within the past
twenty years. The two most prominent algorithms in
this field are Probabilistic Roadmaps (PRM) [4] and
Rapidly-exploring Random Trees (RRT) [8]. Both re-
sult from the same approach: sample robot states
randomly and try to connect them to an existing
roadmap/tree using local steering methods. They
provide theoretical guarantees such as probabilistic
completeness (if there is a solution, running the al-
gorithm forever will eventually find it) [8], but suffer
from the curse of dimensionality: their computational
complexity is exponential in the dimension of the ex-
plored space. As such, they are not fit for real-time
planning.

Successful whole-body motion planning of hu-
manoid robots using RRTs appeared for the first
time in [6]. In this work, planning is performed in
the configuration space and a dynamics filter is ap-

plied to time-parametrize the returned path into a
dynamically-feasible trajectory. However, to ensure
that such time parametrization is possible, all nodes
in the tree are restricted to statically-stable config-
urations, which is a severe limitation since many hu-
manoid motions, including walk, are dynamically bal-
anced without being statically stable. Another ap-
proach advocated in [8] is to perform planning in the
state space (i.e., adding velocity coordinates), yet it
doubles the space’s dimension, which is intractable for
high-DoF systems such as humanoid robots.

In the present paper, we present and further de-
velop a motion planning approach recently proposed
in [10], which allows planning with dynamics con-
straints while staying in the configuration space; thus
avoiding the complexity explosion mentioned above.
We briefly discuss how this approach can be extended
to handle ZMP constraints, which may give rise to a
new family of efficient motion planners for humanoid
robots.

The outline of the paper is as follows: after defin-
ing the problem and terminology in Section 2., we in-
tegrate the Velocity Interval Propagation algorithm
from [10] into RRT in Section 3.. Experimental anal-
ysis of our solution is provided in Section 4., and we
finally describe in Section 5. how ZMP balance con-
straints can be integrated into our framework to de-
velop a complete kinodynamic planner for humanoid
robots.

2. Problem statement

We denote by C the configuration space of the
robot, i.e., the space of vectors q = (q1, . .., g,) where
¢; represents the joint-angle of the robot’s jth degree
of freedom. We call state space the set X of vectors

N . . .
x = (q q) including configurations and velocity co-
ordinates. We assume the system is driven by the
non-linear relation

i':f(x7u)7 (1)

where u is a control vector belonging to some compact
input space U.

We call path of the system any continuous curve
P C C of the configuration space. Paths carry all the
kinematic information of a motion. We call trajectory
a time-parametrized path, i.e., a function ¢ : [0,7] —
P such that ¢(0) and ¢(T") are both extremities of
the underlying path P. We will denote by first(q) :=
q(0) and last(q) := ¢q(T") these two extremities. We
say that a path is traversable when it admits a time-
parametrization satisfying the system dynamics (1),



i.e., when there exists a control w : [0,7] — U such
that both vt € [0,T7, (¢,4) = f((g,9), u).

3. Velocity Interval Propagation
3.1 RRT

The RRT algorithm was introduced in [7], further
analyzed in [8] and applied to dynamically-stable mo-
tion planning of humanoid robots in [6]. In the present
section, we will suppose an RRT growing in the state
space X, i.e., the probabilistically complete planner
described in [8]. It requires the following components:

Metric: a function o : X? — [0,+00) representing
the distance between two states.

Trajectory checker: a function trajcheck ensuring
that there is no collision along the path and that
all differential conditions are satisfied.

Local steering: a method steer which may be any of
the local methods mentioned in section 1.. Dur-
ing local steering from a state wggart, a “close”
state goa1 is provided and a control driving the
system from Zstart to Tgoal 18 sought after.

In what follows, we will distinguish two approaches to
local steering:

e using forward dynamics, where a set of control
functions u : [0,7,] — U is considered and the
one driving the system closest to zgq,) 1s retained
(this approach can be found in [7, 2]);
e using inverse dynamics, where a set of state func-
tions z : [0, 7] — A driving the system to Zgqq)
is considered, and a suitable control is computed
using inverse dynamics (this approach is the one
used in [6].
The latter is useful when additional conditions (such
as static stability [6]) are enforced on configurations
or velocities, while they are difficult to achieve with
a forward dynamics-based approach. However, using
forward dynamics is much more efficient for exploring
the system’s (dynamically) reachable space.

Algorithm 1 describes RRT planning in the state
space.

Algorithm 1 RRT(x;pit, IV, o, steer, trajcheck):
L (V. E) < (2init}, )
2: for N steps do

3 Zrand < new sample from Xpee

41 Tparent < argmin{o(z, T;anq) | © € V}
5. traj < steer(Zparent, Trand)

6:  if trajcheck(traj) then

7: Tyast < last(traj)

8: V<« Vu {xlast}

9: E + EU{(zparent, T1ast)}

10:  end if

11: end for

12: return T = (V, E)

3.2 Extension to £ Nearest Neighbors

We first considered the extension to k nearest
neighbors out of necessity: kinodynamic feasiblity is
a strong constraint imposed on local paths, which re-
sulted in a high rejection rate of sampled states. We
found that considering not one, but up to k nearest
neighbors (according to the metric o) resulted in a
substantial performance increase. It turns out that
this observation can be related to the distortion be-
tween o and the ideal metric associated with steer, as
discussed below.

kNN-RRT’s pseudo-code can be obtained from
Algorithm 1 by replacing the right operand of line 4
with argming{o(x, T;anq) | * € V}, i.e., the set of
k nearest neighbors of x,,,q in the tree. VIP-RRT
includes this modification (see Algorithm 2).

The choice of the metric ¢ is crucial to the per-
formance of RRTs. Euclidean distances are a default
choice, but they turn out to be ill-suited for problems
as simple as the single inverted pendulum [14]. Given
a local steering method steer, [8] suggested that the
ideal metric for RRT is the cost-to-go function asso-
ciated with steer, which is such that arg min{cost-to-
g0(z, Tyand) | © € V} would return the best antecedent
for xyanq in the tree at line 4 of Algorithm 1. How-
ever, computing this metric is as difficult as solving
the entire planning problem. The k nearest-neighbor
heuristic approximates it. For k = 1, it relies only
on the metric . For k = |V| (size of the tree), it
yields the optimal antecedent. The quality of the ap-
proximation depends on the distortion between o and
cost-to-go.

3.3 VIP Algorithm

Velocity Interval Propagation, which we intro-
duced in [10], stems from the time-optimal control
algorithm [1, 13, 16, 12]. Given a path in the configu-
ration space, this algorithm detects whether a traver-
sal of that path respecting differential constraints ex-
ists, and if so, returns the one of minimum duration.
This approach is based on the derivation of Maximum
Velocity Curves (MVCs) of the system. We showed
in [10] how MVCs can be used to propagate intervals
of reachable velocities, an operation that we coined
“VIP” for Velocity Interval Propagation. Its proto-
type goes as follows:

Inputs: a path P C Cgee and an interval [vgﬁi, vglefx]

of velocities available at the beginning of P;

Output: the interval [ve1d yend

ities at the end of P.

] of reachable veloc-

Velocity intervals are certificates of traversability:
when extending the tree from gparent t0 Grand, there
exist a trajectory from the root of the tree to qrand
if the VIP call from gparent Was successful. This is
a necessary and sufficient condition for single-valued
MVC systems, and only a sufficient condition for
multiple-valued MVC systems. In other words, the



global traversability property can be checked incre-
mentally while growing the tree. Although the global
traversability was ensured through constraining all
tree nodes to statically stable configurations in [6], us-
ing velocity intervals allows for dynamically balanced
trajectories.

3.4 VIP-RRT

As discussed in subsection 3.2, straightforward
integration of VIP into a simple RRT does not yield
satisfying results due to severe constraints on local
steering. This can be worked around with the kNN
heuristic. Pseudo-code for the resulting solution is
shown in Algorithm 2, where v := [vnin, Umax] de-
notes velocity intervals.

Algorithm 2 VIP-RRT(k, ginit, N, oc, steerc):

i (V. E) « (@t 0)

2: for N steps do

3:  Qrand < new sample from Cppee

4: nearest < argming{oc(¢; Grand) | (¢,v) € V'}
5. for each (gnear, Vnear) € nearest do
6: path < steerc(gnear, Grand)

7: Qlast < last(path)

8: Vast < VIP(path)

9: if 1146t is not empty then
10: V = VU {(qrast: Vast) }
11: E+ EU {(qparenta QIast)}
12: break the inner loop
13: end if
14:  end for
15: end for
16: return 7 = (V, E)

4. Simulation results

Preliminary simulations were run on a 2-DoF in-
verted pendulum with torque constraints. In this set-
ting, the goal is to swing-up the pendulum from its
stable, downward equilibrium to its unstable, upward
one. The minimum torque required to perform the
motion quasi-statically is 7 = 15.68 Nm at the first
joint. We set a torque constraint of 7" = 8 Nm
on this joint, and 75" = 4 Nm on the second one.
Although we already performed simulations with this
pendulum in [10], the torque limits are lower here,
which resulted in a different behavior that we discuss
below.

Figure 1 shows the performances of all three al-
gorithms (RRT, kNN-RRT and VIP-RRT) over forty
runs of this system. We chose k = 40, as identified in
the supplementary material of [10] for the pendulum.
The left plot shows the fraction of successful planners
when given more computation time. Note that the
problem is quite difficult, as indicated by the fact that
only one instance of the simple X-space RRT found a
solution. ENN-RRT yielded significant improvement
with eight successful planners, which we interpret as a
benefit of its local approximation of the ideal metric.
VIP-RRT performed best in the lot with more than

twenty successful planners, a substantial gain that we
attribute to the ability to plan in configuration space
(versus state space for RRT and ANN-RRT).

The right part of the Figure shows the distance
to the goal area averaged over all runs. After mak-
ing steep progress toward the goal, RRT and ANN-
RRT’s progress slows down to almost zero. This phe-
nomenon did not appear in [10]. It results from the
increased difficulty of the problem: compared to our
previous setting, successful trajectories now require
three pumping motions instead of two, which implies
exponentially longer trajectories in the state space.
Therefore, even though kNN-RRTSs (resp. RRTSs) find
the first swing-ups in around 30 min (resp. 1 hr), it
will take them exponentially longer to find the last
one. Meanwhile, to discover an additional pumping
motion, VIP-RRT only needs to sample its extremal
configuration, thanks to sparse trees and the KNN
heuristic.

Fig.2 Successful trajectory planned with VIP-
RRT for the simulated pendulum. Color
changes indicate a change in the direction
of movement: green corresponds to the first
swing-up (to the right), then blue (to the
left), then magenta (to the right) and finally
red until the stand-up configuration.

5. Towards a complete kinodynamic
planner for humanoid robots

For humanoid robots, balance constraints are of
primary concern. A well-known condition for dy-
namic balance is that the ZMP stays within the con-
vex hull of the ground contact points at any time
instant [17].  [11] described how to perform time-
optimal path parametrization for dynamic motions of
humanoid robots: first, an MVC is derived from ZMP
balance constraints, and then the time parametriza-
tion algorithm is applied to this MVC. Independently,
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Fig.1 RRT, kNN-RRT and VIP-RRT ran over 40 instances of a double inverted pendulum with torque limits
(8 Nm on the first joint and 4 Nm on the second one). The horizontal axis shows computation time, while
the vertical axis represents the number of successful planners (left) and the distance to the goal area (right)

averaged over all runs.

we described in [10] how intervals of reachable veloc-
ities can be propagated along MVCs.

Our plan is now to integrate the two lines of
work, i.e., to propagate velocity intervals along MVCs
derived from ZMP balance constraints of humanoid
robots. The resulting planner would, as Algorithm 2,
plan in the configuration space. When steering from
one configuration to another, local paths will be in-
terpolated and checked using the VIP routine: if the
propagation succeeds, we can parametrize them into
trajectories respecting the robot’s holonomic and bal-
ance constraints.
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