Double Description Method

Stability conditions are known locally at contact areas (see Contact Wrench Cone) Use the Equations of Motion to combine them at the COM:

$$\begin{aligned} \mathbf{f}_{\mathrm{GI}} &= -\sum_{\mathrm{contact } i} \mathbf{R}_{i} \mathbf{f}_{i} & \text{Gravito-Inertial Wrench} \\ \tau_{\mathrm{GI}} &= -\sum_{\mathrm{contact } i} (\mathbf{p}_{i} - \mathbf{p}_{\mathrm{CoM}}) \times \mathbf{R}_{i} \mathbf{f}_{i} + \mathbf{R}_{i} \tau_{i} & \tau_{\mathrm{GI}} &:= \mathbf{p}_{\mathrm{CoM}} \times m(\mathbf{g} - \ddot{\mathbf{p}}_{\mathrm{CoM}}) \end{aligned}$$

Apply a Cone Duality algorithm to convert local polytopes $(\mathbf{f}_i, \tau_i) \in CWC_i$ to an equivalent 6D polytope $(\mathbf{f}_{GI}, \tau_{GI}) \in \mathcal{GIWC}$, the Gravito-Inertial Wrench Cone.

Fastest known: Double-Description Method (Motzkin et al.) Code: cddlib (C), pycddlib (Python), ...

Contact Wrench Cone

Same physical model as contact force distribution Structure : Friction cone + COP area + Yaw bounds Symbolic calculation (Fourier-Motzkin algorithm) $f^z > 0$

Robotics: Science and Systems Tuesday, July 14, 2015

bounded

external

forces

robust static equilibria

 $m(\mathbf{g} - \ddot{\mathbf{p}}_{\text{CoM}})$

 $\mathbf{p}_{\mathrm{CoM}} \times m(\mathbf{g} - \ddot{\mathbf{p}}_{\mathrm{CoM}}) - \mathcal{L}$

contact wrench cone

Leveraging Cone Double Description for Multi-Contact Stability of Humanoids with Applications to Statics and Dynamics

Stéphane Caron University of Tokyo

Quang-Cuong Pham Nanyang Technological University

Yoshihiko Nakamura University of Tokyo

Robust Static Equilibrium

Goal: resist any bounded external force Model: **f**_{ext} bounded and applied at COM Solution: polytope P of COM positions **Prop:** can resist any **f**_{ext} iff COM inside **P** Computing $P: \sim 1$ ms by Double Description Method

whole-body multi-contact planning

Time-Optimal Path Parameterization

Gravito-Inertial Wrench Cone: $\mathbf{A}(\mathbf{p}_{COM})[\mathbf{f}_{GI} \ \tau_{GI}]^{T} \leq 0$ Retiming a path $\mathbf{p}_{COM}(s)$ is possible for constraints $\ddot{s}\mathbf{a}(s) + \dot{s}^2\mathbf{b}(s) + \mathbf{c}(s) \le 0$

Previous approach: polytope projection at each path index sContribution: compute the projector matrix (Double-Description Method) Time to compute all $(\mathbf{a}(s), \mathbf{b}(s), \mathbf{c}(s))$: reduction from ~ 1s to ~ 10 ms (100 points)

Application: find a dynamic stepping motion by only planning the path (minimum momentum > 0, no quasi-static solution)

Initial poster design: Felix Breuer - Orange update: Stéphane Caron - License: Creative Commons Attribution-ShareAlike 3.0 Unported