Dynamic Walking Over Rough Terrains by Nonlinear Predictive Control of the Floating-Base Inverted Pendulum

Stéphane Caron & Abderrahmane Kheddar
September 27, 2017

IROS 2017, Vancouver, Canada
Equation of motion

\[\ddot{c} = \omega^2 (c - z) + \ddot{g} \]

Feasibility conditions

- Constant: \(\omega = \sqrt{g/h} \)
- ZMP support area: \(z \in S \)
- Friction?
Linear Inverted Pendulum

\[
\ddot{c} = \omega^2 (c - z) + g
\]

Feasibility conditions

- Constant: \(\omega = \sqrt{g/h} \)
- ZMP support area: \(z \in S \)
- Friction?

Inverted Pendulum

\[
\ddot{c} = \lambda (c - z) + g
\]

Feasibility conditions

- Unilaterality: \(\lambda \geq 0 \)
- ZMP support area: \(z \in S \)
- Friction?
Equation of motion

\[\ddot{c} = \lambda(c - z) + \ddot{g} \]

Feasibility conditions

- **Unilaterality:** \(\lambda \geq 0 \)
- **ZMP support area:** \(z \in S \)
- **Friction?**
Equation of motion

\[\ddot{c} = \lambda (c - z) + \ddot{g} \]

Feasibility conditions

- Unilaterality: \(\lambda \geq 0 \)
- ZMP support area: \(z \in S \)
- Friction?
Equation of motion

\[\ddot{c} = \lambda(c - z) + \ddot{g} \]

Feasibility conditions

- **Unilaterality:** \(\lambda \geq 0 \)
- **ZMP support area:** \(z \in S \)
- **Friction:** \(c - z \in \mathcal{C} \)
Equation of motion

\[\ddot{c} = \lambda(c - z) + \ddot{g} \]

Forward integration

- Direct multiple shooting
- Discretization: # of sample points, integration step
- Resolution of integrator?

1 See also Takasugi et al. (this session): "3D Walking and Skating..."

2 Carpentier, Tonneau, Naveau, Stasse, and Mansard 2016.
Equation of motion

$$\ddot{c} = \omega^2 (c - z) + \ddot{g}$$

Virtual Repellent Points

- The ZMP/eCMP/VRP can leave the contact area
- Fwd integration is exact:
 $$c(t) = a e^{\omega t} + b e^{-\omega t} + \gamma$$
- Feasibility conditions?

\(^3\text{Englsberger, Ott, and Albu-Schaffer 2015.}\)
Equation of motion

\[\ddot{c} = \omega^2 (c - z) + \ddot{g} \]

Floating-base pendulum

- Floating ZMP (eCMP)
- Exact forward integration
- New feasibility condition
Equation of motion
\[\ddot{c} = \omega^2 (c - z) + \ddot{g} \]

Feasibility conditions
• Constant: \(\omega > 0 \)
• ZMP support cone: \(z \in \mathcal{Z} \)
GOAL
Nonlinear optimization...

- DMS over FIP model
- Adaptive step timings
- Runs at 30 Hz

... but significant failures

- Model is nonconvex
- Noise and delays in ZMP control / COM estimation
 \Rightarrow jumps in PO map
This communication:

Constrained LQ regulator

- Linear EoM + linearized ZMP cones = Quadratic Program
- Runs at 300 Hz, recovers locally from failures

This communication:

Constrained LQ regulator

- Linear EoM + linearized ZMP cones = Quadratic Program
- Runs at 300 Hz, recovers locally from failures

Next communication:

Spoiler!

A *convexly-constrained* model: one global optimum, 1000 Hz

https://scaron.info/research/3d-balance.html

\(^4\)Caron and Mallein 2017.
CHECK IT OUT!

https://github.com/stephane-caron/dynamic-walking
Floating-base Pendulum

- LTI model for 3D walking
- ZMP support area \(\Rightarrow\) cone

Nonlinear Predictive Control

- Can solve full problem
- Failures (nonconvexity)
- Recovery: constrained LQR
THANK YOU FOR YOUR ATTENTION!
