

Supplementary material for “Balance control using both ZMP and COM height variations: a convex boundedness approach”

Stéphane Caron Bastien Mallein

February 26, 2018

This document provides a derivation of the viability conditions given in Section III.A of the paper [1]. To shorten notations, we will denote by:

$$a \stackrel{\text{def}}{=} \sqrt{\lambda_{\min}} \quad b \stackrel{\text{def}}{=} \sqrt{\lambda_{\max}} \quad (1)$$

Values of all quantities at time $t_i = 0$ are denoted by the \square_i subscript.

1 Viability when $\lambda \geq a^2$

Recall that the damping function ω is the non-negative finite solution¹ of $\dot{\omega} = \omega^2 - \lambda$. Then, the inequality $\lambda \geq a^2$ implies that:

$$\dot{\omega} \leq \omega^2 - a^2 = (\omega - a)(\omega + a) \quad (2)$$

Note how, if $\omega_i < a$ then $\limsup_{t \rightarrow +\infty} \omega(t) \leq -a$, which implies that $\omega_i \geq a$ is a necessary condition for viability. Next, when $\omega_i > a$, we can solve the above differential inequality by comparing to its upper-bounding profile:

$$\dot{\bar{\omega}} = (\bar{\omega} - a)(\bar{\omega} + a) \quad \bar{\omega}_i = \omega_i \quad (3)$$

We can solve the differential equation on the upper-bounding profile as:

$$\frac{\dot{\bar{\omega}}}{(a - \bar{\omega})(\bar{\omega} + a)} = -1 \iff \frac{\dot{\bar{\omega}}}{a - \bar{\omega}} + \frac{\dot{\bar{\omega}}}{a + \bar{\omega}} = -2a \iff \left(\log \frac{\bar{\omega} + a}{a - \bar{\omega}} \right) = -2a \quad (4)$$

So that, *in fine*:

$$\omega(t) \leq \bar{\omega}(t) = a \frac{1 - \frac{a - \omega_i}{a + \omega_i} e^{2at}}{1 + \frac{a - \omega_i}{a + \omega_i} e^{2at}} = -a \frac{\cosh(a(T_a - t))}{\sinh(a(T_a - t))} \quad (5)$$

where $T_a \stackrel{\text{def}}{=} \frac{-1}{2a} \log \frac{\omega_i - a}{\omega_i + a}$. This inequality implies that, for all $t \leq T_a$,

$$\Omega(t) \leq \log \sinh(aT_a) - \log \sinh(a(T_a - t)) \quad (6)$$

Injecting this upper bound in the boundedness condition yields:

$$\xi_i \geq \frac{g}{\sinh(aT_a)} \int_{T_a}^{T_a} \sinh(a(T_a - t)) dt = \frac{g}{a \sinh(aT_a)} (\cosh(aT_a) - 1) \quad (7)$$

Let us now denote by $X \stackrel{\text{def}}{=} \sqrt{\frac{\omega_i - a}{\omega_i + a}} \in [0, 1]$, so that:

$$\frac{\cosh(aT_a) - 1}{\sinh(aT_a)} = \frac{X + X^{-1} - 2}{X^{-1} - X} = \frac{(1 - X)^2}{1 - X^2} = \frac{(1 - X)^2}{1 - \frac{\omega_i - a}{\omega_i + a}} = \frac{(1 - X)^2}{2a} (\omega_i + a) \quad (8)$$

¹ See also Section II of [2] for more details on the properties expected from ω .

We can now rewrite our viability condition (7) as:

$$\xi_i \geq \frac{g}{2a^2} (\omega_i + a) \left(1 - \sqrt{\frac{\omega_i - a}{\omega_i + a}} \right)^2 \quad (9)$$

$$= \frac{g}{2a^2} (\sqrt{\omega_i + a} - \sqrt{\omega_i - a})^2 \quad (10)$$

$$= \frac{g}{a^2} (\omega_i - \sqrt{\omega_i^2 - a^2}) \quad (11)$$

Recalling that $\omega_i = -\dot{x}_i/x_i$, this condition can finally be rewritten as:

$$\dot{z}_i - \frac{\dot{x}_i}{x_i} z_i - \frac{g}{a^2} \left(-\frac{\dot{x}_i}{x_i} + \sqrt{\frac{(\dot{x}_i)^2}{x_i^2} - a^2} \right) \geq 0 \quad (12)$$

One could also invert this equation to obtain the largest value of a for which solutions exist.

2 Viability when $a^2 \leq \lambda \leq b^2$

Similarly to the setting where $\lambda \geq a^2$, the condition $\lambda < b^2$ prevents the damping ω from taking values larger than b : if $\omega_i > b$, then

$$\omega(t) \geq -b \frac{\cosh(b(T_b - t))}{\sinh(b(T_b - t))} \quad (13)$$

$$\Omega(t) \geq \log \sinh(bT_b) - \log \sinh(b(T_b - t)) \quad (14)$$

This means that, at a time no greater than T_b , $x(t)$ will reach 0. Yet, at this finite instant, $\dot{x}(t)$ will be positive and the robot will overshoot its target static equilibrium. Consequently, a necessary condition for viability is that:

$$a \leq \omega(t) = \frac{\dot{x}(t)}{x(t)} \leq b \quad (15)$$

2.1 Updated lower bound

We need first to re-assess the lower-bound on ξ_i that we obtained previously. To minimize $\int e^{-\Omega(t)} dt$, $\lambda(t)$ must be equal to a^2 until the time T_1 such that $\omega(T_1) = b$, at which point it will switch to $\lambda(t) = b^2$ for all $t \geq T_1$. Let us denote by $\bar{\omega}$ the corresponding solution to $\dot{\omega} = \omega^2 - \lambda$, and $\bar{\Omega}$ its antiderivative such that $\bar{\Omega}_i = 0$. For any $t \leq T_1$,

$$\bar{\omega}(t) = -\frac{a}{\tanh(a(T_a - t))} \quad e^{-\bar{\Omega}(t)} = \frac{\sinh(a(T_a - t))}{\sinh(aT_a)} \quad (16)$$

In particular, the value of the latter expression at time T_1 is given by:

$$T_1 = T_a - \frac{1}{a} \operatorname{artanh} \left(\frac{a}{b} \right) \quad e^{-\bar{\Omega}(T_1)} = \frac{\sinh(\operatorname{artanh}(a/b))}{\sinh(aT_a)} = \frac{a}{\sinh(aT_a) \sqrt{b^2 - a^2}} \quad (17)$$

From there, we deduce a lower bound on the boundedness time integral:

$$\int_0^\infty e^{-\Omega(t)} dt \geq \int_0^\infty e^{-\bar{\Omega}(t)} dt \quad (18)$$

$$= \int_0^{T_1} \frac{\sinh(a(T_a - t))}{\sinh(aT_a)} dt + \frac{\sinh(a(T_a - T_1))}{\sinh(aT_a)} \int_{T_1}^\infty e^{b(T_1 - t)} dt \quad (19)$$

$$= \frac{\cosh(aT_a) - \cosh(a(T_a - T_1))}{a \sinh(aT_a)} + \frac{\sinh(a(T_a - T_1))}{b \sinh(aT_a)} \quad (20)$$

$$= \frac{1}{a \tanh(aT_a)} - \frac{b/a - a/b}{\sqrt{b^2 - a^2} \sinh(aT_a)} \quad (21)$$

2.2 New upper bound

In a fashion similar to the previous paragraph, to make ω as small as possible, $\lambda(t)$ must be equal to b^2 until some time T_2 such that $\omega(T_2) = a$, at which point it will switch to $\lambda(t) = a^2$ for all $t \geq T_2$. Let us denote by $\underline{\omega}$ the corresponding solution to $\dot{\omega} = \omega^2 - \lambda$, and $\underline{\Omega}$ its antiderivative such that $\underline{\Omega}_i = 0$. For any $t \leq T_2$,

$$\underline{\omega}(t) = b \frac{1 - \frac{b-\omega_i}{b+\omega_i} e^{2bt}}{1 + \frac{b-\omega_i}{b+\omega_i} e^{2bt}} \quad (22)$$

Let us denote by $Y \stackrel{\text{def}}{=} \sqrt{\frac{b-\omega_i}{b+\omega_i}}$ and $T_b \stackrel{\text{def}}{=} -(\log Y)/b$. Then,

$$\underline{\omega}(t) = b \tanh(b(T_b - t)) \quad e^{-\underline{\Omega}(t)} = \frac{\cosh(b(T_b - t))}{\cosh(bT_b)} \quad (23)$$

Let us further denote by $T_2 = \inf\{t : \underline{\omega}(t) = a\} = T_b - \frac{\text{argth}(a/b)}{b}$. Then,

$$\int_0^\infty e^{-\underline{\Omega}(t)} dt \leq \int_0^{T_1} e^{-Y\underline{\Omega}(t)} dt + e^{-\underline{\Omega}(T_1)} \int_0^{+\infty} e^{-at} dt \quad (24)$$

$$= \frac{\sinh(bT_b) - \sinh(b(T_b - T_1))}{b \cosh(bT_b)} + \frac{\cosh(b(T_b - T_1))}{a \cosh(bT_b)} \quad (25)$$

$$= \frac{\tanh(bT_b)}{b} + \frac{b/a - a/b}{\sqrt{b^2 - a^2} \cosh(bT_b)} \quad (26)$$

2.3 Final viability condition

Combining inequalities (21)–(26) with, as before, the relationship $\omega_i = -\dot{x}_i/x_i$, we finally obtain the viability condition corresponding to the feasibility constraint $a^2 \leq \lambda \leq b^2$:

$$g \left(\frac{1}{a \tanh(aT_a)} - \frac{\sqrt{b^2 - a^2}}{ab \sinh(aT_a)} \right) \leq \dot{z}_i - \frac{\dot{x}_i}{x_i} z_i \leq g \left(\frac{\tanh(bT_b)}{b} + \frac{\sqrt{b^2 - a^2}}{ab \cosh(bT_b)} \right). \quad (27)$$

One could also invert these bounds to find the smallest and largest values for b and a , respectively, such that solutions exist.

References

- [1] Stéphane Caron, Adrien Escande, Leonardo Lanari, and Bastien Mallein. Capturability-based analysis, optimization and control of 3D bipedal walking. In *IEEE-RAS International Conference on Robotics and Automation*, 2018.
- [2] Stéphane Caron, Adrien Escande, Leonardo Lanari, and Bastien Mallein. Capturability-based analysis, optimization and control of 3d bipedal walking. Submitted, 2018.