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This document provides a derivation of the viability conditions given in Section III.A of
the paper [1]. To shorten notations, we will denote by:

a déf )\min b déf V /\max (1)

Values of all quantities at time ¢; = 0 are denoted by the [J; subscript.

1 Viability when \ > a?

Recall that the damping function w is the non-negative finite solutiorﬂ of & = w? —\. Then,
the inequality A > a? implies that:

w<w—a?=(w—a)(w+a) (2)

Note how, if w; < a then limsup,_, ,  w(t) < —a, which implies that w; > a is a necessary
condition for viability. Next, when w; > a, we can solve the above differential inequality by
comparing to its upper-bounding profile:

W= @—a)(@+a) W = w; (3)

We can solve the differential equation on the upper-bounding profile as:

w w w
—— =1 = + —
(a —w)(w+a) a—-w a+w

a—w

=20 <~ <logw+a> =—2a (4)

So that, in fine:

1 — a—wiglat cosh(a(T, —t))
)<wt)=a—FL—— = q—— 2 = 5
wit) st =ag— a2t~ “inh(a(T, — 1) (5)
where Ty, def g—; log Z;Z This inequality implies that, for all ¢t < T,

Q(t) <logsinh(aT,) — logsinh(a(T, —t)) (6)

Injecting this upper bound in the boundedness condition yields:

Ta
g . g
i > h(a(T, —t))dt = —/—————= h(aTy) — 1
G2 sinh(aTa)/i sinh(a( ) asmh(aTa)(COS (aTa) = 1) @
Let us now denote by X < o4a €[0,1], so that:

cosh(aT,) — 1 _X—i-X_l—Q_ (1-X) _ (1-X)? _ (1_X>2( +a) (8)
sinh(aT,) X '1-X  1-X2 ]-—w=a  9q wima

wita

1 See also Section IT of [2] for more details on the properties expected from w.



We can now rewrite our viability condition as:

2

g wi —a
62 o (1-/252) )
g 2
=542 (Vwi +a — Vw; —a) (10)
g
= Lwi—yfut —a) (1)
Recalling that w; = —&;/x;, this condition can finally be rewritten as:
. @ g T (&1)2

One could also invert this equation to obtain the largest value of a for which solutions exist.

2 Viability when a? < \ < b?

Similarly to the setting where A\ > a?, the condition A < b? prevents the damping w from
taking values larger than b: if w; > b, then

w(t) cosh(b(Tp, — 1))
sinh(b(T, — t))
Q(t) > logsinh(bTy) — log sinh(b(T}, — t)) (14)

v

—b (13)

This means that, at a time no greater than Ty, x(¢) will reach 0. Yet, at this finite instant,

z(t) will be positive and the robot will overshoot its target static equilibrium. Consequently,
a necessary condition for viability is that:

z(t

a<w(t)=—=<b 15

<ult) = 7o) < (15)

~ | —

2.1 Updated lower bound

We need first to re-assess the lower-bound on & that we obtained previously. To minimize
[ e d¢, A(t) must be equal to a? until the time T} such that w(7}) = b, at which point
it will switch to A(t) = b? for all t > T}. Let us denote by @ the corresponding solution to
W =w? — A, and Q its antiderivative such that ; = 0. For any ¢ < T},

= — a _aw _ sinh(a(T, —t))
) . — = e_ 1) 16
() =~ h(a(T, =) ¢ sinh(aTy) (16)
In particular, the value of the latter expression at time 7} is given by:
T =T, - lartanh (g) T _ Sinh(.artanh(a/b)) _ a (17)
a b sinh(aTy,) sinh(aTy,)Vb? — a?

From there, we deduce a lower bound on the boundedness time integral:

[ee] o —
/ e Odt > / e M0 qy (18)
0 0

Ty : 00

! sinh(a(T, — t)) sinh(a(Ty — T1)) / b(Ty—1)

= 1 1
/0 sinh(aT,) di sinh(aT,) ¢ dt (19)

T
_ cosh(aT,) — cosh(a(T, —Th)) | sinh(a(T, — T1))
B asinh(aTy,) bsinh(aT,) (20)
_ 1 B b/a —a/b (1)

atanh(aT,)) /b2 — a2 sinh(aT,)



2.2 New upper bound

In a fashion similar to the previous paragraph, to make w as small as possible, A(t) must
be equal to b? until some time Ty such that w(7Ty) = a, at which point it will switch to
A(t) = a? for all t > Ty. Let us denote by w the corresponding solution to & = w? — A, and
Q its antiderivative such that ©; = 0. For any ¢ < 715,

1 — bowi 20t

w(t) = b—pti 22
w(t) =by = (22)

def b—w;

Let us denote by Y = /7= ©

and T, = —(logY")/b. Then,

o—2(t) _ cosh(b(Ty — t))

w(t) = btanh(b(Ty, — t)) cosh (T} (23)
Let us further denote by Ty = inf{t : w(t) = a} =T — %(a/b). Then,
o T “+o00
/ e ¥ dt < / e YWt 4 ¢~ / e tdt (24)
0 0 0
sinh(bT}) — sinh(b(T, — T1))  cosh(b(T, — T1))
= + (25)
b cosh(bTy) a cosh(bTy)
_ tanh(bTy) N b/a—a/b (26)

b Vb2 — a2 cosh(bT)

2.3 Final viability condition

Combining inequalities f with, as before, the relationship w; = —i;/x;, we finally
obtain the viability condition corresponding to the feasibility constraint a? < \ < b?:

1 Vb —a? s &z < tanh(bTy) n b% — a? (27)
g atanh(aT,)) absinh(aT,) ) =" x; " ~ g b abcosh(bTy) |

One could also invert these bounds to find the smallest and largest values for b and a,
respectively, such that solutions exist.
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