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This document provides a derivation of the viability conditions given in Section III.A of
the paper [1]. To shorten notations, we will denote by:

a
def
=
√
λmin b

def
=
√
λmax (1)

Values of all quantities at time ti = 0 are denoted by the �i subscript.

1 Viability when λ ≥ a2

Recall that the damping function ω is the non-negative finite solution1 of ω̇ = ω2−λ. Then,
the inequality λ ≥ a2 implies that:

ω̇ ≤ ω2 − a2 = (ω − a)(ω + a) (2)

Note how, if ωi < a then lim supt→+∞ ω(t) ≤ −a, which implies that ωi ≥ a is a necessary
condition for viability. Next, when ωi > a, we can solve the above differential inequality by
comparing to its upper-bounding profile:

ω̇ = (ω − a)(ω + a) ωi = ωi (3)

We can solve the differential equation on the upper-bounding profile as:

ω̇

(a− ω)(ω + a)
= −1 ⇐⇒ ω̇

a− ω
+

ω̇

a+ ω
= −2a ⇐⇒

(
log

ω + a

a− ω

)
= −2a (4)

So that, in fine:

ω(t) ≤ ω(t) = a
1− a−ωi

a+ωi
e2at

1 + a−ωi

a+ωi
e2at

= −acosh(a(Ta − t))
sinh(a(Ta − t))

(5)

where Ta
def
= −1

2a log ωi−a
ωi+a . This inequality implies that, for all t ≤ Ta,

Ω(t) ≤ log sinh(aTa)− log sinh(a(Ta − t)) (6)

Injecting this upper bound in the boundedness condition yields:

ξi ≥
g

sinh(aTa)

∫ Ta

i

sinh(a(Ta − t))dt =
g

a sinh(aTa)
(cosh(aTa)− 1) (7)

Let us now denote by X
def
=
√

ωi−a
ωi+a ∈ [0, 1], so that:

cosh(aTa)− 1

sinh(aTa)
=
X +X−1 − 2

X−1 −X
=

(1−X)2

1−X2
=

(1−X)2

1− ωi−a
ωi+a

=
(1−X)2

2a
(ωi + a) (8)

1 See also Section II of [2] for more details on the properties expected from ω.
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We can now rewrite our viability condition (7) as:

ξi ≥
g

2a2
(ωi + a)

(
1−

√
ωi − a
ωi + a

)2

(9)

=
g

2a2

(√
ωi + a−

√
ωi − a

)2
(10)

=
g

a2
(ωi −

√
ω2

i − a2) (11)

Recalling that ωi = −ẋi/xi, this condition can finally be rewritten as:

żi −
ẋi

xi
zi −

g

a2

(
− ẋi

xi
+

√
(ẋi)2

x2
i

− a2

)
≥ 0 (12)

One could also invert this equation to obtain the largest value of a for which solutions exist.

2 Viability when a2 ≤ λ ≤ b2

Similarly to the setting where λ ≥ a2, the condition λ < b2 prevents the damping ω from
taking values larger than b: if ωi > b, then

ω(t) ≥ −bcosh(b(Tb − t))
sinh(b(Tb − t))

(13)

Ω(t) ≥ log sinh(bTb)− log sinh(b(Tb − t)) (14)

This means that, at a time no greater than Tb, x(t) will reach 0. Yet, at this finite instant,
ẋ(t) will be positive and the robot will overshoot its target static equilibrium. Consequently,
a necessary condition for viability is that:

a ≤ ω(t) =
ẋ(t)

x(t)
≤ b (15)

2.1 Updated lower bound

We need first to re-assess the lower-bound on ξi that we obtained previously. To minimize∫
e−Ω(t)dt, λ(t) must be equal to a2 until the time T1 such that ω(T1) = b, at which point

it will switch to λ(t) = b2 for all t ≥ T1. Let us denote by ω the corresponding solution to
ω̇ = ω2 − λ, and Ω its antiderivative such that Ωi = 0. For any t ≤ T1,

ω(t) = − a

tanh(a(Ta − t))
e−Ω(t) =

sinh(a(Ta − t))
sinh(aTa)

(16)

In particular, the value of the latter expression at time T1 is given by:

T1 = Ta −
1

a
artanh

(a
b

)
e−Ω(T1) =

sinh(artanh(a/b))

sinh(aTa)
=

a

sinh(aTa)
√
b2 − a2

(17)

From there, we deduce a lower bound on the boundedness time integral:∫ ∞
0

e−Ω(t)dt ≥
∫ ∞

0

e−Ω(t)dt (18)

=

∫ T1

0

sinh(a(Ta − t))
sinh(aTa)

dt+
sinh(a(Ta − T1))

sinh(aTa)

∫ ∞
T1

eb(T1−t)dt (19)

=
cosh(aTa)− cosh(a(Ta − T1))

a sinh(aTa)
+

sinh(a(Ta − T1))

b sinh(aTa)
(20)

=
1

a tanh(aTa))
− b/a− a/b√

b2 − a2 sinh(aTa)
(21)
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2.2 New upper bound

In a fashion similar to the previous paragraph, to make ω as small as possible, λ(t) must
be equal to b2 until some time T2 such that ω(T2) = a, at which point it will switch to
λ(t) = a2 for all t ≥ T2. Let us denote by ω the corresponding solution to ω̇ = ω2 − λ, and
Ω its antiderivative such that Ωi = 0. For any t ≤ T2,

ω(t) = b
1− b−ωi

b+ωi
e2bt

1 + b−ωi

b+ωi
e2bt

(22)

Let us denote by Y
def
=
√

b−ωi

b+ωi
and Tb

def
= −(log Y )/b. Then,

ω(t) = b tanh(b(Tb − t)) e−Ω(t) =
cosh(b(Tb − t))

cosh(bTb)
(23)

Let us further denote by T2 = inf{t : ω(t) = a} = Tb − argth(a/b)
b . Then,∫ ∞

0

e−Ω(t)dt ≤
∫ T1

0

e−Y Ω(t)dt+ e−Ω(T1)

∫ +∞

0

e−atdt (24)

=
sinh(bTb)− sinh(b(Tb − T1))

b cosh(bTb)
+

cosh(b(Tb − T1))

a cosh(bTb)
(25)

=
tanh(bTb)

b
+

b/a− a/b√
b2 − a2 cosh(bTb)

(26)

2.3 Final viability condition

Combining inequalities (21)–(26) with, as before, the relationship ωi = −ẋi/xi, we finally
obtain the viability condition corresponding to the feasibility constraint a2 ≤ λ ≤ b2:

g

(
1

a tanh(aTa))
−
√
b2 − a2

ab sinh(aTa)

)
≤ żi −

ẋi

xi
zi ≤ g

(
tanh(bTb)

b
+

√
b2 − a2

ab cosh(bTb)

)
. (27)

One could also invert these bounds to find the smallest and largest values for b and a,
respectively, such that solutions exist.
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