Balance control using both ZMP and COM height variations: A convex boundedness approach ¹LIRMM, Montpellier, France ²LAGA, Villetaneuse, France Stéphane Caron¹ and Bastien Mallein²

> Trajectory-free height variations for 3D bipedal walking

> > **Example of stair climbing**

Time-invariant DCM

• CoM acceleration:
$$\ddot{m{c}}=\omega^2(m{c}-m{r})$$

2D walking: \boldsymbol{r} is the ZMP (Zero-tilting Moment Point) 3D walking: \boldsymbol{r} is the VRP (Virtual Repellent Point)

• Time-invariant DCM:
$$\boldsymbol{\xi} = \boldsymbol{c} + \frac{\boldsymbol{c}}{\omega}$$

2D walking: $\boldsymbol{\xi}$ is the Capture Point 3D walking: $\boldsymbol{\xi}$ is the DCM (Divergent Component of Motion)

Decoupled dynamics:

$$\left\{ egin{array}{lll} m{\xi} = \omega(m{\xi} - m{r}) \ \dot{m{c}} = \omega(m{\xi} - m{c}) \end{array}
ight.$$

<u>When possible</u>, setting $oldsymbol{r}=oldsymbol{\xi}$ brings the robot to a stop

Time-variant DCM

$$ullet$$
 CoM acceleration: $\ddot{m{c}}=\lambda(t)(m{c}-m{r})+m{g}$

3D walking: \boldsymbol{r} is the ZMP (Zero-tilting Moment Point) It needs to belong to the foot contact area

$$ullet$$
 Time-variant DCM: $oldsymbol{\xi}=\dot{oldsymbol{c}}+\omega(t)oldsymbol{c}$

3D walking: $\boldsymbol{\xi}$ can be a position or a velocity (velocity version yields simpler formulas here)

O DCM dynamics:
$$\dot{oldsymbol{\xi}} = \omega(t)oldsymbol{\xi} + oldsymbol{g} - \lambda(t)oldsymbol{r}$$

Subject to the Riccati equation:
$$\dot{\omega}=\omega^2-\omega^2$$

Capturability with height variations

History of these concepts:

- Englsberger et al. (IROS 2013): Time-invariant DCM for 3D walking
- Lanari et al. (Hum. 2014): Boundedness condition for 2D walking
- Hopkins et al. (Hum. 2014): Time-varying DCM from height trajectory
 Koolen et al. (Hum. 2016): Capturability using height variations (2D)

