STABILITY OF SURFACE CONTACTS: CLOSED-FORM FORMULAE OF THE CONTACT WRENCH CONE FOR RECTANGULAR SUPPORT AREAS

Stéphane Caron¹ Quang-Cuong Pham² Yoshihiko Nakamura¹

¹ Nakamura-Takano Laboratory, UT

² CRI Group, NTU

WHAT IS CONTACT STABILITY?

- Goal: locomote using environment forces
- Approach:
 - Decide contact geometry
 - Maintain that contact ("stability")
 - \rightarrow position and force constraints
 - Generate contact forces

CONTACT CONDITION

- There are 6 DOF of contact:
 - Three translations
 - Roll and pitch rotations
 - Yaw rotation

Coulomb constraints:

- Normal translation: $f_z \ge 0$
- Surface translation: $|f_t| \le \mu f_z$

COP CONDITION

- There are 6 DOF of contact:
 - Three translations
 - Roll and pitch rotations
 - Yaw rotations
- COP constraints:
 - Roll: $-Y \le C_y \le Y$
 - Pitch: $-X \le c_x \le X$

COMPLETE CONDITION?

- There are 6 DOF of contact:
 - Three translations
 - Roll and pitch rotations
 - Yaw rotation
 - \Rightarrow Contribution of the paper

SURFACE WRENCH CONE

- It constraints all 6 contact DOF
- We have its analytical formula
- Can be used with \leq 6 DOF, e.g. sliding contacts
- Non-redundant representation, e.g. directly applicable to TOPP

RECTANGULAR SURFACES

- Wrench Cone (16 rows) =
 - Coulomb condition (4 rows)
 - COP condition (4 rows)
 - Yaw condition (8 rows) (new)

ZMP AREA IN SINGLE CONTACT

- Single-contact: Surface Wrench Cone ⇔ ZMP/COP area
- Area is smaller than the foot contact surface
- Figure: $\mu = 0.1$

APPLICATIONS

THANK YOU FOR YOUR ATTENTION :)